Intelligent Data Engineering and Automated Learning – IDEAL 2020

Intelligent Data Engineering and Automated Learning – IDEAL 2020
Author: Cesar Analide
Publisher: Springer Nature
Total Pages: 633
Release: 2020-10-29
Genre: Computers
ISBN: 3030623653

This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.

Intelligent Science and Intelligent Data Engineering

Intelligent Science and Intelligent Data Engineering
Author: Jian Yang
Publisher: Springer
Total Pages: 895
Release: 2013-02-11
Genre: Computers
ISBN: 3642366694

This book constitutes the proceedings of the third Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, IScIDE 2012, held in Nanjing, China, in October 2012. The 105 papers presented were carefully peer-reviewed and selected from 429 submissions. Topics covered include pattern recognition; computer vision and image processing; machine learning and computational intelligence; knowledge discovery, data mining, and web mining; graphics and computer visualization; and multimedia processing and applications.

Advances in Data Science and Intelligent Data Communication Technologies for COVID-19

Advances in Data Science and Intelligent Data Communication Technologies for COVID-19
Author: Aboul-Ella Hassanien
Publisher: Springer Nature
Total Pages: 311
Release: 2021-07-23
Genre: Computers
ISBN: 3030773027

This book presents the emerging developments in intelligent computing, machine learning, and data mining. It also provides insights on communications, network technologies, and the Internet of things. It offers various insights on the role of the Internet of things against COVID-19 and its potential applications. It provides the latest cloud computing improvements and advanced computing and addresses data security and privacy to secure COVID-19 data.

Intelligent Science and Intelligent Data Engineering

Intelligent Science and Intelligent Data Engineering
Author: Yanning Zhang
Publisher: Springer
Total Pages: 787
Release: 2012-07-23
Genre: Computers
ISBN: 364231919X

This book constitutes the proceedings of the Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, IScIDE 2011, held in Xi'an, China, in October 2011. The 97 papers presented were carefully peer-reviewed and selected from 389 submissions. The IScIDE papers in this volume are organized in topical sections on machine learning and computational intelligence; pattern recognition; computer vision and image processing; graphics and computer visualization; knowledge discovering, data mining, web mining; multimedia processing and application.

Intelligent Data Engineering and Analytics

Intelligent Data Engineering and Analytics
Author: Suresh Chandra Satapathy
Publisher: Springer Nature
Total Pages: 758
Release: 2020-08-29
Genre: Technology & Engineering
ISBN: 9811556792

This book gathers the proceedings of the 8th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2020), held at NIT Surathkal, Karnataka, India, on 4–5 January 2020. In these proceedings, researchers, scientists, engineers and practitioners share new ideas and lessons learned in the field of intelligent computing theories with prospective applications in various engineering disciplines. The respective papers cover broad areas of the information and decision sciences, and explore both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. Given its scope, the book offers a valuable resource for graduate students in various engineering disciplines.

Data Science

Data Science
Author: Pallavi Vijay Chavan
Publisher: CRC Press
Total Pages: 323
Release: 2022-08-15
Genre: Business & Economics
ISBN: 1000613429

This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features • Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. • Presents predictive outcomes by applying data science techniques to real-life applications. • Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. • Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.

Guide to Intelligent Data Science

Guide to Intelligent Data Science
Author: Michael R. Berthold
Publisher: Springer Nature
Total Pages: 427
Release: 2020-08-06
Genre: Computers
ISBN: 3030455742

Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.

Intelligent Data Analysis

Intelligent Data Analysis
Author: Michael R. Berthold
Publisher: Springer
Total Pages: 515
Release: 2007-06-07
Genre: Computers
ISBN: 3540486259

This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Intelligent Data Analysis

Intelligent Data Analysis
Author: Deepak Gupta
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2020-07-13
Genre: Technology & Engineering
ISBN: 1119544459

This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.