Interest Rate Modelling in the Multi-Curve Framework

Interest Rate Modelling in the Multi-Curve Framework
Author: M. Henrard
Publisher: Springer
Total Pages: 300
Release: 2014-05-29
Genre: Business & Economics
ISBN: 1137374667

Following the financial crisis dramatic market changes, a new standard in interest rate modelling emerged, called the multi-curve framework. The author provides a detailed analysis of the framework, through its foundations, evolution and implementation. The book also covers recent extensions to collateral and stochastic spreads modelling.

Interest Rate Modeling

Interest Rate Modeling
Author: Leif B. G. Andersen
Publisher:
Total Pages: 1154
Release: 2010
Genre: Business & Economics
ISBN: 9780984422104

"The three volumes of Interest rate modeling are aimed primarily at practitioners working in the area of interest rate derivatives, but much of the material is quite general and, we believe, will also hold significant appeal to researchers working in other asset classes. Students and academics interested in financial engineering and applied work will find the material particularly useful for its description of real-life model usage and for its expansive discussion of model calibration, approximation theory, and numerical methods."--Preface.

Interest Rate Models - Theory and Practice

Interest Rate Models - Theory and Practice
Author: Damiano Brigo
Publisher: Springer Science & Business Media
Total Pages: 1016
Release: 2007-09-26
Genre: Mathematics
ISBN: 354034604X

The 2nd edition of this successful book has several new features. The calibration discussion of the basic LIBOR market model has been enriched considerably, with an analysis of the impact of the swaptions interpolation technique and of the exogenous instantaneous correlation on the calibration outputs. A discussion of historical estimation of the instantaneous correlation matrix and of rank reduction has been added, and a LIBOR-model consistent swaption-volatility interpolation technique has been introduced. The old sections devoted to the smile issue in the LIBOR market model have been enlarged into a new chapter. New sections on local-volatility dynamics, and on stochastic volatility models have been added, with a thorough treatment of the recently developed uncertain-volatility approach. Examples of calibrations to real market data are now considered. The fast-growing interest for hybrid products has led to a new chapter. A special focus here is devoted to the pricing of inflation-linked derivatives. The three final new chapters of this second edition are devoted to credit. Since Credit Derivatives are increasingly fundamental, and since in the reduced-form modeling framework much of the technique involved is analogous to interest-rate modeling, Credit Derivatives -- mostly Credit Default Swaps (CDS), CDS Options and Constant Maturity CDS - are discussed, building on the basic short rate-models and market models introduced earlier for the default-free market. Counterparty risk in interest rate payoff valuation is also considered, motivated by the recent Basel II framework developments.

C# for Financial Markets

C# for Financial Markets
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
Total Pages: 866
Release: 2013-03-04
Genre: Business & Economics
ISBN: 0470030089

A practice-oriented guide to using C# to design and program pricing and trading models In this step-by-step guide to software development for financial analysts, traders, developers and quants, the authors show both novice and experienced practitioners how to develop robust and accurate pricing models and employ them in real environments. Traders will learn how to design and implement applications for curve and surface modeling, fixed income products, hedging strategies, plain and exotic option modeling, interest rate options, structured bonds, unfunded structured products, and more. A unique mix of modern software technology and quantitative finance, this book is both timely and practical. The approach is thorough and comprehensive and the authors use a combination of C# language features, design patterns, mathematics and finance to produce efficient and maintainable software. Designed for quant developers, traders and MSc/MFE students, each chapter has numerous exercises and the book is accompanied by a dedicated companion website, www.datasimfinancial.com/forum/viewforum.php?f=196&sid=f30022095850dee48c7db5ff62192b34, providing all source code, alongside audio, support and discussion forums for readers to comment on the code and obtain new versions of the software.

Discounting, LIBOR, CVA and Funding

Discounting, LIBOR, CVA and Funding
Author: C. Kenyon
Publisher: Springer
Total Pages: 280
Release: 2012-08-06
Genre: Business & Economics
ISBN: 1137268522

Providing the most up-to-date tools and techniques for pricing interest rate and credit products for the new financial world, this book discusses pricing and hedging, funding and regulation, and interpretation, as an essential resource for quantitatively minded practitioners and researchers in finance.

Algorithmic Differentiation in Finance Explained

Algorithmic Differentiation in Finance Explained
Author: Marc Henrard
Publisher: Springer
Total Pages: 112
Release: 2017-09-04
Genre: Business & Economics
ISBN: 3319539795

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation. Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years. Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task. It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming. Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision. Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation. Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.

Interest Rate Derivatives Explained

Interest Rate Derivatives Explained
Author: J. Kienitz
Publisher: Springer
Total Pages: 264
Release: 2014-12-05
Genre: Business & Economics
ISBN: 1137360070

Aimed at practitioners who need to understand the current fixed income markets and learn the techniques necessary to master the fundamentals, this book provides a thorough but concise description of fixed income markets, looking at the business, products and structures and advanced modeling of interest rate instruments.

Term-Structure Models

Term-Structure Models
Author: Damir Filipovic
Publisher: Springer Science & Business Media
Total Pages: 259
Release: 2009-07-28
Genre: Mathematics
ISBN: 3540680152

Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis.

Pathwise Estimation and Inference for Diffusion Market Models

Pathwise Estimation and Inference for Diffusion Market Models
Author: Nikolai Dokuchaev
Publisher: CRC Press
Total Pages: 173
Release: 2019-03-26
Genre: Mathematics
ISBN: 0429948859

Pathwise estimation and inference for diffusion market models discusses contemporary techniques for inferring, from options and bond prices, the market participants' aggregate view on important financial parameters such as implied volatility, discount rate, future interest rate, and their uncertainty thereof. The focus is on the pathwise inference methods that are applicable to a sole path of the observed prices and do not require the observation of an ensemble of such paths. This book is pitched at the level of senior undergraduate students undertaking research at honors year, and postgraduate candidates undertaking Master’s or PhD degree by research. From a research perspective, this book reaches out to academic researchers from backgrounds as diverse as mathematics and probability, econometrics and statistics, and computational mathematics and optimization whose interest lie in analysis and modelling of financial market data from a multi-disciplinary approach. Additionally, this book is also aimed at financial market practitioners participating in capital market facing businesses who seek to keep abreast with and draw inspiration from novel approaches in market data analysis. The first two chapters of the book contains introductory material on stochastic analysis and the classical diffusion stock market models. The remaining chapters discuss more special stock and bond market models and special methods of pathwise inference for market parameter for different models. The final chapter describes applications of numerical methods of inference of bond market parameters to forecasting of short rate. Nikolai Dokuchaev is an associate professor in Mathematics and Statistics at Curtin University. His research interests include mathematical and statistical finance, stochastic analysis, PDEs, control, and signal processing. Lin Yee Hin is a practitioner in the capital market facing industry. His research interests include econometrics, non-parametric regression, and scientific computing.