Introduction to Aircraft Aeroelasticity and Loads

Introduction to Aircraft Aeroelasticity and Loads
Author: Jan Robert Wright
Publisher: John Wiley & Sons
Total Pages: 559
Release: 2008-02-28
Genre: Technology & Engineering
ISBN: 047085846X

Aeroelastic phenomena arising from the interaction of aerodynamic, elastic and inertia forces, and the loads resulting from flight / ground manoeuvres and gust / turbulence encounters, have a significant influence upon aircraft design. The prediction of aircraft aeroelastic stability, response and loads requires application of a range of interrelated engineering disciplines. This new textbook introduces the foundations of aeroelasticity and loads for the flexible aircraft, providing an understanding of the main concepts involved and relating them to aircraft behaviour and industrial practice. This book includes the use of simplified mathematical models to demonstrate key aeroelastic and loads phenomena including flutter, divergence, control effectiveness and the response and loads resulting from flight / ground manoeuvres and gust / turbulence encounters. It provides an introduction to some up-to-date methodologies for aeroelastics and loads modelling. It lays emphasis on the strong link between aeroelasticity and loads. It also includes provision of MATLAB and SIMULINK programs for the simplified analyses. It offers an overview of typical industrial practice in meeting certification requirements.

An Introduction to the Theory of Aeroelasticity

An Introduction to the Theory of Aeroelasticity
Author: Y C Fung
Publisher: Courier Dover Publications
Total Pages: 516
Release: 2008-10-17
Genre: Technology & Engineering
ISBN: 0486469360

Geared toward advanced undergraduates and graduate students, this outstanding text surveys aeroelastic problems, their historical background, basic physical concepts, and the principles of analysis.

Introduction to Nonlinear Aeroelasticity

Introduction to Nonlinear Aeroelasticity
Author: Grigorios Dimitriadis
Publisher: John Wiley & Sons
Total Pages: 944
Release: 2017-03-10
Genre: Technology & Engineering
ISBN: 1118756460

Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.

Principles of Aeroelasticity

Principles of Aeroelasticity
Author: Raymond L. Bisplinghoff
Publisher: Courier Corporation
Total Pages: 545
Release: 2013-10-17
Genre: Technology & Engineering
ISBN: 0486783162

Geared toward professional engineers, this volume will be helpful for students, too. Topics include methods of constructing static and dynamic equations, heated elastic solids, forms of aerodynamic operators, structural operators, and more. 1962 edition.

Introduction to Structural Dynamics and Aeroelasticity

Introduction to Structural Dynamics and Aeroelasticity
Author: Dewey H. Hodges
Publisher: Cambridge University Press
Total Pages: 0
Release: 2014-01-02
Genre: Technology & Engineering
ISBN: 9781107617094

This text provides an introduction to structural dynamics and aeroelasticity, with an emphasis on conventional aircraft. The primary areas considered are structural dynamics, static aeroelasticity, and dynamic aeroelasticity. The structural dynamics material emphasizes vibration, the modal representation, and dynamic response. Aeroelastic phenomena discussed include divergence, aileron reversal, airload redistribution, unsteady aerodynamics, flutter, and elastic tailoring. More than one hundred illustrations and tables help clarify the text, and more than fifty problems enhance student learning. This text meets the need for an up-to-date treatment of structural dynamics and aeroelasticity for advanced undergraduate or beginning graduate aerospace engineering students. Praise from the First Edition "Wonderfully written and full of vital information by two unequalled experts on the subject, this text meets the need for an up-to-date treatment of structural dynamics and aeroelasticity for advanced undergraduate or beginning graduate aerospace engineering students." - Current Engineering Practice "Hodges and Pierce have written this significant publication to fill an important gap in aeronautical engineering education. Highly recommended." - Choice ". . . a welcome addition to the textbooks available to those with interest in aeroelasticity. . . . As a textbook, it serves as an excellent resource for advanced undergraduate and entry-level graduate courses in aeroelasticity. . . . Furthermore, practicing engineers interested in a background in aeroelasticity will find the text to be a friendly primer." - AIAA Bulletin

Principles of Aeroelasticity

Principles of Aeroelasticity
Author: Rama B. Bhat
Publisher: CRC Press
Total Pages: 178
Release: 2018-09-03
Genre: Science
ISBN: 1498724787

Introductory Guide on the Design of Aerospace Structures Developed from a course taught at Concordia University for more than 20 years, Principles of Aeroelasticity utilizes the author’s extensive teaching experience to immerse undergraduate and first-year graduate students into this very specialized subject. Ideal for coursework or self-study, this detailed examination introduces the concepts of aeroelasticity, describes how aircraft lift structures behave when subjected to aerodynamic loads, and finds its application in aerospace, civil, and mechanical engineering. The book begins with a discussion on static behavior, and moves on to static instability and divergence, dynamic behavior leading up to flutter, and fluid structure interaction problems. It covers classical approaches based on low-order aerodynamic models and provides a rationale for adopting certain aeroelastic models. The author describes the formulation of discrete models as well as continuous structural models. He also provides approximate methods for solving divergence, flutter, response and stability of structures, and addresses non-aeroelastic problems in other areas that are similar to aeroelastic problems. Topics covered include: The fundamentals of vibration theory Vibration of single degree of freedom and two degrees of freedom systems Elasticity in the form of an idealized spring element Repetitive motion Flutter phenomenon Classical methods, Rayleigh-Ritz techniques, Galerkin’s technique, influential coefficient methods, and finite element methods Unsteady aerodynamics, and more

Aeroelasticity

Aeroelasticity
Author: AV Balakrishnan
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2012-07-12
Genre: Mathematics
ISBN: 1461436095

The author's approach is one of continuum models of the aerodynamic flow interacting with a flexible structure whose behavior is governed by partial differential equations. Both linear and nonlinear models are considered although much of the book is concerned with the former while keeping the latter clearly in view. A complete chapter is also devoted to nonlinear theory. The author has provided new insights into the classical inviscid aerodynamics and raises novel and interesting questions on fundamental issues that have too often been neglected or forgotten in the development of the early history of the subject. The author contrasts his approach with discrete models for the unsteady aerodynamic flow and the finite element model for the structure. Much of the aeroelasticity has been developed with applications formerly in mind because of its enormous consequences for the safety of aircraft. Aeroelastic instabilities such as divergence and flutter and aeroelastic responses to gusts can pose a significant hazard to the aircraft and impact its performance. Yet, it is now recognized that there are many other physical phenomena that have similar characteristics ranging from flows around flexible tall buildings and long span bridges, alternate energy sources such as electric power generation by smart structures to flows internal to the human body. From the foreword: "For the theorist and applied mathematician who wishes an introduction to this fascinating subject as well as for the experienced aeroelastician who is open to new challenges and a fresh viewpoint, this book and its author have much to offer the reader." Earl Dowell, Duke University, USA

A Modern Course in Aeroelasticity

A Modern Course in Aeroelasticity
Author: E.H. Dowell
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9401104999

Aeroelasticity is the study of flexible structures situated in a flowing fluid. Its modern origins are in the field of aerospace engineering, but it has now expanded to include phenomena arising in other fields such as bioengineering, civil engineering, mechanical engineering and nuclear engineering. The present volume is a teaching text for a first, and possibly second, course in aeroelasticity. It will also be useful as a reference source on the fundamentals of the subject for practitioners. In this third edition, several chapters have been revised and three new chapters added. The latter include a brief introduction to `Experimental Aeroelasticity', an overview of a frontier of research `Nonlinear Aeroelasticity', and the first connected, authoritative account of `Aeroelastic Control' in book form. The authors are drawn from a range of fields including aerospace engineering, civil engineering, mechanical engineering, rotorcraft and turbomachinery. Each author is a leading expert in the subject of his chapter and has many years of experience in consulting, research and teaching.

A Modern Course in Aeroelasticity

A Modern Course in Aeroelasticity
Author: Robert Clark
Publisher: Springer Science & Business Media
Total Pages: 788
Release: 2004-09-30
Genre: Mathematics
ISBN: 9781402020391

In this new edition, the fundamental material on classical linear aeroelasticity has been revised. Also new material has been added describing recent results on the research frontiers dealing with nonlinear aeroelasticity as well as major advances in the modelling of unsteady aerodynamic flows using the methods of computational fluid dynamics and reduced order modeling techniques. New chapters on aeroelasticity in turbomachinery and aeroelasticity and the latter chapters for a more advanced course, a graduate seminar or as a reference source for an entrée to the research literature.