Introduction to Nonparametric Estimation

Introduction to Nonparametric Estimation
Author: Alexandre B. Tsybakov
Publisher: Springer Science & Business Media
Total Pages: 222
Release: 2008-10-22
Genre: Mathematics
ISBN: 0387790527

Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Nonparametric Curve Estimation

Nonparametric Curve Estimation
Author: Sam Efromovich
Publisher: Springer Science & Business Media
Total Pages: 423
Release: 2008-01-19
Genre: Mathematics
ISBN: 0387226389

This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics
Author: John E. Kolassa
Publisher: CRC Press
Total Pages: 225
Release: 2020-09-28
Genre: Mathematics
ISBN: 0429511361

An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Nonparametric Functional Estimation

Nonparametric Functional Estimation
Author: B. L. S. Prakasa Rao
Publisher: Academic Press
Total Pages: 539
Release: 2014-07-10
Genre: Mathematics
ISBN: 148326923X

Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.

Nonparametric Kernel Density Estimation and Its Computational Aspects

Nonparametric Kernel Density Estimation and Its Computational Aspects
Author: Artur Gramacki
Publisher: Springer
Total Pages: 197
Release: 2017-12-21
Genre: Technology & Engineering
ISBN: 3319716883

This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.

All of Nonparametric Statistics

All of Nonparametric Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2006-09-10
Genre: Mathematics
ISBN: 0387306234

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Nonparametric Curve Estimation from Time Series

Nonparametric Curve Estimation from Time Series
Author: Lazlo Györfi
Publisher: Springer
Total Pages: 157
Release: 2013-12-21
Genre: Mathematics
ISBN: 146123686X

Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.

A Distribution-Free Theory of Nonparametric Regression

A Distribution-Free Theory of Nonparametric Regression
Author: László Györfi
Publisher: Springer Science & Business Media
Total Pages: 662
Release: 2006-04-18
Genre: Mathematics
ISBN: 0387224424

This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.

Nonparametric Econometrics

Nonparametric Econometrics
Author: Qi Li
Publisher: Princeton University Press
Total Pages: 769
Release: 2011-10-09
Genre: Business & Economics
ISBN: 1400841062

A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.