Introduction to Surface Engineering

Introduction to Surface Engineering
Author: P. A. Dearnley
Publisher: Cambridge University Press
Total Pages: 798
Release: 2017-01-16
Genre: Technology & Engineering
ISBN: 1316785084

This highly illustrated reference work covers the three principal types of surface technologies that best protect engineering devices and products: diffusion technologies, deposition technologies, and other less commonly acknowledged surface engineering (SE) techniques. Various applications are noted throughout the text and additionally whole chapters are devoted to specific SE applications across the automotive, gas turbine engine (GTE), metal machining, and biomedical implant sectors. Along with the benefits of SE, this volume also critically examines SE's limitations. Materials degradation pathways - those which can and those which cannot be mitigated by SE - are rigorously explained. Written from a scientific, materials engineering perspective, this concise text is supported by high-quality images and photo-micrographs which show how surfaces can be engineered to overcome the limits of conventionally produced materials, even in complex or hostile operating environments. This book is a useful resource for undergraduate and postgraduate students as well as professional engineers.

Introduction to Surface Engineering and Functionally Engineered Materials

Introduction to Surface Engineering and Functionally Engineered Materials
Author: Peter Martin
Publisher: John Wiley & Sons
Total Pages: 586
Release: 2011-10-04
Genre: Technology & Engineering
ISBN: 1118171888

This book provides a clear and understandable text for users and developers of advanced engineered materials, particularly in the area of thin films, and addresses fundamentals of modifying the optical, electrical, photo-electric, triboligical, and corrosion resistance of solid surfaces and adding functionality to solids by engineering their surface, structure, and electronic, magnetic and optical structure. Thin film applications are emphasized. Through the inclusion of multiple clear examples of the technologies, how to use them,and the synthesis processes involved, the reader will gain a deep understanding of the purpose, goals, and methodology of surface engineering and engineered materials. Virtually every advance in thin film, energy, medical, tribological materials technologies has resulted from surface engineering and engineered materials. Surface engineering involves structures and compositions not found naturally in solids and is used to modify the surface properties of solids and involves application of thin film coatings, surface functionalization and activation, and plasma treatment. Engineered materials are the future of thin film technology. Engineered structures such as superlattices, nanolaminates, nanotubes, nanocomposites, smart materials, photonic bandgap materials, metamaterials, molecularly doped polymers and structured materials all have the capacity to expand and increase the functionality of thin films and coatings used in a variety of applications and provide new applications. New advanced deposition processes and hybrid processes are being used and developed to deposit advanced thin film materials and structures not possible with conventional techniques a decade ago. Properties can now be engineered into thin films that achieve performance not possible a decade ago.

Surface Engineering for Corrosion and Wear Resistance

Surface Engineering for Corrosion and Wear Resistance
Author: J. R. Davis
Publisher: ASM International
Total Pages: 286
Release: 2001-01-01
Genre: Corrosion and anti-corrosives
ISBN: 1615030727

Engineers are faced with a bewildering array of choices when selecting a surface treatment for a specific corrosion or wear application. This book provides practical information to help them select the best possible treatment. An entire chapter is devoted to process comparisons, and dozens of useful tables and figures compare surface treatment thickness and hardness ranges; abrasion and corrosion resistance; processing time, temperature, and pressure; costs; distortion tendencies; and other critical process factors and coating characteristics. The chapter Practical Guidelines for Surface Engin.

An Introduction to Surface Analysis by XPS and AES

An Introduction to Surface Analysis by XPS and AES
Author: John F. Watts
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2019-08-27
Genre: Technology & Engineering
ISBN: 1119417643

Provides a concise yet comprehensive introduction to XPS and AES techniques in surface analysis This accessible second edition of the bestselling book, An Introduction to Surface Analysis by XPS and AES, 2nd Edition explores the basic principles and applications of X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) techniques. It starts with an examination of the basic concepts of electron spectroscopy and electron spectrometer design, followed by a qualitative and quantitative interpretation of the electron spectrum. Chapters examine recent innovations in instrument design and key applications in metallurgy, biomaterials, and electronics. Practical and concise, it includes compositional depth profiling; multi-technique analysis; and everything about samples—including their handling, preparation, stability, and more. Topics discussed in more depth include peak fitting, energy loss background analysis, multi-technique analysis, and multi-technique profiling. The book finishes with chapters on applications of electron spectroscopy in materials science and the comparison of XPS and AES with other analytical techniques. Extensively revised and updated with new material on NAPXPS, twin anode monochromators, gas cluster ion sources, valence band spectra, hydrogen detection, and quantification Explores key spectroscopic techniques in surface analysis Provides descriptions of latest instruments and techniques Includes a detailed glossary of key surface analysis terms Features an extensive bibliography of key references and additional reading Uses a non-theoretical style to appeal to industrial surface analysis sectors An Introduction to Surface Analysis by XPS and AES, 2nd Edition is an excellent introductory text for undergraduates, first-year postgraduates, and industrial users of XPS and AES.

Advanced Thermally Assisted Surface Engineering Processes

Advanced Thermally Assisted Surface Engineering Processes
Author: Ramnarayan Chattopadhyay
Publisher: Springer Science & Business Media
Total Pages: 377
Release: 2007-05-08
Genre: Technology & Engineering
ISBN: 1402077645

Surfaces are the bounding faces of solids. The interaction of component surface with the working environment results in wear and corrosion. Estimated loss due to wear and corrosion in the USA is around $500 billion. Engineered surfaces are the key to the reduction of losses due to wear and corrosion. There are surface engineering books on specific processes such as thermal spraying and vapor phase deposition or about specific heat sources such as plasma or laser. However, there are few, if any, covering the whole range of advanced surface engineering processes. Advanced Thermally Assisted Surface Engineering Processes has been structured to provide assistance and guidance to the engineers, researchers and students in choosing the right process from the galaxy of newer surface engineering techniques using advanced heat sources.

Laser Surface Engineering

Laser Surface Engineering
Author: Jonathan R. Lawrence
Publisher: Elsevier
Total Pages: 719
Release: 2014-10-02
Genre: Technology & Engineering
ISBN: 1782420797

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. - Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics - Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures - Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering

Surface Science

Surface Science
Author: K. Oura
Publisher: Springer Science & Business Media
Total Pages: 443
Release: 2013-03-14
Genre: Science
ISBN: 3662051796

The most important aspects of modern surface science are covered. All topics are presented in a concise and clear form accessible to a beginner. At the same time, the coverage is comprehensive and at a high technical level, with emphasis on the fundamental physical principles. Numerous examples, references, practice exercises, and problems complement this remarkably complete treatment, which will also serve as an excellent reference for researchers and practitioners. The textbook is idea for students in engineering and physical sciences.

Surface Engineering of Polymer Membranes

Surface Engineering of Polymer Membranes
Author: Zhi-Kang Xu
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2009-05-15
Genre: Technology & Engineering
ISBN: 3540884130

Surface Engineering of Polymer Membranes covers the processes that modify membrane surfaces to improve their in-service performance, meaning, to confer surface properties which are different from the bulk properties. Purposes may be to minimize fouling, modulate hydrophilicity/ hydrophobicity, enhance biocompatibility, create diffusion barriers, provide functionalities, mimic biomembranes, fabricate nanostructures, etc. First, the basics of surface engineering of polymer membranes are covered. Then topics such as surface modification by graft polymerization and macromolecule immobilization, biomimetic surfaces, enzyme immobilization, molecular recognition, and nanostructured surfaces are discussed. This book provides a unique synthesis of the knowledge of the role of surface chemistry and physics in membrane science. Dr. Zhikang Xu of the Institute of Polymer Science of Zhejiang University has eight Chinese patents and in 2006 was honored as a Distinguished Young Scholar by the National Natural Science Foundation of China (NNSFC).