Introduction to the Mechanics of Deformable Solids

Introduction to the Mechanics of Deformable Solids
Author: David H. Allen
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2012-08-09
Genre: Science
ISBN: 1461440033

Introduction to the Mechanics of Deformable Solids: Bars and Beams introduces the theory of beams and bars, including axial, torsion, and bending loading and analysis of bars that are subjected to combined loadings, including resulting complex stress states using Mohr’s circle. The book provides failure analysis based on maximum stress criteria and introduces design using models developed in the text. Throughout the book, the author emphasizes fundamentals, including consistent mathematical notation. The author also presents the fundamentals of the mechanics of solids in such a way that the beginning student is able to progress directly to a follow-up course that utilizes two- and three-dimensional finite element codes imbedded within modern software packages for structural design purposes. As such, excessive details included in the previous generation of textbooks on the subject are obviated due to their obsolescence with the availability of today’s finite element software packages.

Mechanics of Deformable Solids

Mechanics of Deformable Solids
Author: Issam Doghri
Publisher: Springer Science & Business Media
Total Pages: 606
Release: 2000-07-13
Genre: Science
ISBN: 9783540669609

Three subjects of major interest in one textbook: linear elasticity, mechanics of structures in linear isotropic elasticity, and nonlinear mechanics including computational algorithms. After the simplest possible, intuitive approach there follows the mathematical formulation and analysis, with computational methods occupying a good portion of the book. There are several worked-out problems in each chapter and additional exercises at the end of the book, plus mathematical expressions are bery often given in more than one notation. The book is intended primarily for students and practising engineers in mechanical and civil engineering, although students and experts from applied mathematics, materials science and other related fields will also find it useful.

Introduction to Solid Mechanics

Introduction to Solid Mechanics
Author: Jacob Lubliner
Publisher: Springer
Total Pages: 539
Release: 2016-10-12
Genre: Science
ISBN: 331918878X

This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.

Applied Mechanics of Solids

Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
Total Pages: 820
Release: 2009-10-05
Genre: Science
ISBN: 1439802483

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o

Fundamentals of the Mechanics of Solids

Fundamentals of the Mechanics of Solids
Author: Paolo Maria Mariano
Publisher: Birkhäuser
Total Pages: 439
Release: 2015-11-30
Genre: Mathematics
ISBN: 1493931334

This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams. The authors take a deductive rather than inductive approach and start from a few first, foundational principles. A wide selection of exercises, many with hints and solutions, are provided throughout and organized in a way that will allow readers to form a link between abstract mathematical concepts and real-world applications. The text begins with the definition of bodies and deformations, keeping the kinematics of rigid bodies as a special case; the authors also distinguish between material and spatial metrics, defining each one in the pertinent space. Subsequent chapters cover observers and classes of possible changes; forces, torques, and related balances, which are derived from the invariance under classical changes in observers of the power of the external actions over a body, rather than postulated a priori; constitutive structures; variational principles in linear elasticity; the de Saint-Venant problem; yield criteria and a discussion of their role in the representation of material behavior; and an overview of some bifurcation phenomena, focusing on the Euler rod. An appendix on tensor algebra and tensor calculus is included for readers who need a brief refresher on these topics. Fundamentals of the Mechanics of Solids is primarily intended for graduate and advanced undergraduate students in various fields of engineering and applied mathematics. Prerequisites include basic courses in calculus, mathematical analysis, and classical mechanics.

Continuum Mechanics of Solids

Continuum Mechanics of Solids
Author: Lallit Anand
Publisher: Oxford Graduate Texts
Total Pages: 722
Release: 2020
Genre: Continuum mechanics
ISBN: 0198864728

This introductory graduate text is a unified treatment of the major concepts of Solid Mechanics for beginning graduate students in the many branches of engineering. Major topics are elasticity, viscoelasticity, plasticity, fracture, and fatigue. The book also has chapters on thermoelasticity, chemoelasticity, poroelasticity and piezoelectricity.

Flow, Deformation and Fracture

Flow, Deformation and Fracture
Author: Grigory Isaakovich Barenblatt
Publisher: Cambridge University Press
Total Pages: 277
Release: 2014-06-05
Genre: Science
ISBN: 1139915746

Over forty years of teaching experience are distilled into this text. The guiding principle is the wide use of the concept of intermediate asymptotics, which enables the natural introduction of the modeling of real bodies by continua. Beginning with a detailed explanation of the continuum approximation for the mathematical modeling of the motion and equilibrium of real bodies, the author continues with a general survey of the necessary methods and tools for analyzing models. Next, specific idealized approximations are presented, including ideal incompressible fluids, elastic bodies and Newtonian viscous fluids. The author not only presents general concepts but also devotes chapters to examining significant problems, including turbulence, wave-propagation, defects and cracks, fatigue and fracture. Each of these applications reveals essential information about the particular approximation. The author's tried and tested approach reveals insights that will be valued by every teacher and student of mechanics.

Fundamentals of Biomechanics

Fundamentals of Biomechanics
Author: Dawn L. Leger
Publisher: Springer Science & Business Media
Total Pages: 420
Release: 2013-03-14
Genre: Medical
ISBN: 1475730675

Extensively revised from a successful first edition, this book features a wealth of clear illustrations, numerous worked examples, and many problem sets. It provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics, and as such will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine.