Introduction To The Theory Of Neural Computation

Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: CRC Press
Total Pages: 352
Release: 2018-03-08
Genre: Science
ISBN: 0429968213

Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

An Information-Theoretic Approach to Neural Computing

An Information-Theoretic Approach to Neural Computing
Author: Gustavo Deco
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2012-12-06
Genre: Computers
ISBN: 1461240166

A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory
Author: Michael J. Kearns
Publisher: MIT Press
Total Pages: 230
Release: 1994-08-15
Genre: Computers
ISBN: 9780262111935

Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Graphical Models

Graphical Models
Author: Michael Irwin Jordan
Publisher: MIT Press
Total Pages: 450
Release: 2001
Genre: Artificial intelligence
ISBN: 9780262600422

This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss

Artificial Neural Networks

Artificial Neural Networks
Author: P.J. Braspenning
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 1995-06-02
Genre: Computers
ISBN: 9783540594888

This book presents carefully revised versions of tutorial lectures given during a School on Artificial Neural Networks for the industrial world held at the University of Limburg in Maastricht, Belgium. The major ANN architectures are discussed to show their powerful possibilities for empirical data analysis, particularly in situations where other methods seem to fail. Theoretical insight is offered by examining the underlying mathematical principles in a detailed, yet clear and illuminating way. Practical experience is provided by discussing several real-world applications in such areas as control, optimization, pattern recognition, software engineering, robotics, operations research, and CAM.

An Introduction to Natural Computation

An Introduction to Natural Computation
Author: Dana H. Ballard
Publisher: MIT Press
Total Pages: 338
Release: 1999-01-22
Genre: Psychology
ISBN: 9780262522588

This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.

Analogical Connections

Analogical Connections
Author: Keith James Holyoak
Publisher: Intellect (UK)
Total Pages: 520
Release: 1994
Genre: Computers
ISBN:

Presenting research on the computational abilities of connectionist, neural, and neurally inspired systems, this series emphasizes the question of how connectionist or neural network models can be made to perform rapid, short-term types of computation that are useful in higher level cognitive processes. The most recent volumes are directed mainly at researchers in connectionism, analogy, metaphor, and case-based reasoning, but are also suitable for graduate courses in those areas.

Neural Computing - An Introduction

Neural Computing - An Introduction
Author: R Beale
Publisher: CRC Press
Total Pages: 260
Release: 1990-01-01
Genre: Mathematics
ISBN: 9781420050431

Neural computing is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. The book also highlights the applications of each approach and explores the relationships among models developed and between the brain and its function. A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.

Neuronal Dynamics

Neuronal Dynamics
Author: Wulfram Gerstner
Publisher: Cambridge University Press
Total Pages: 591
Release: 2014-07-24
Genre: Computers
ISBN: 1107060834

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.