Introductory Mathematical Analysis for Quantitative Finance

Introductory Mathematical Analysis for Quantitative Finance
Author: Daniele Ritelli
Publisher: CRC Press
Total Pages: 322
Release: 2020-04-13
Genre: Mathematics
ISBN: 1351245104

Introductory Mathematical Analysis for Quantitative Finance is a textbook designed to enable students with little knowledge of mathematical analysis to fully engage with modern quantitative finance. A basic understanding of dimensional Calculus and Linear Algebra is assumed. The exposition of the topics is as concise as possible, since the chapters are intended to represent a preliminary contact with the mathematical concepts used in Quantitative Finance. The aim is that this book can be used as a basis for an intensive one-semester course. Features: Written with applications in mind, and maintaining mathematical rigor. Suitable for undergraduate or master's level students with an Economics or Management background. Complemented with various solved examples and exercises, to support the understanding of the subject.

Introduction to Quantitative Finance

Introduction to Quantitative Finance
Author: Robert R. Reitano
Publisher: MIT Press
Total Pages: 747
Release: 2010-01-29
Genre: Mathematics
ISBN: 026201369X

An introduction to many mathematical topics applicable to quantitative finance that teaches how to “think in mathematics” rather than simply do mathematics by rote. This text offers an accessible yet rigorous development of many of the fields of mathematics necessary for success in investment and quantitative finance, covering topics applicable to portfolio theory, investment banking, option pricing, investment, and insurance risk management. The approach emphasizes the mathematical framework provided by each mathematical discipline, and the application of each framework to the solution of finance problems. It emphasizes the thought process and mathematical approach taken to develop each result instead of the memorization of formulas to be applied (or misapplied) automatically. The objective is to provide a deep level of understanding of the relevant mathematical theory and tools that can then be effectively used in practice, to teach students how to “think in mathematics” rather than simply to do mathematics by rote. Each chapter covers an area of mathematics such as mathematical logic, Euclidean and other spaces, set theory and topology, sequences and series, probability theory, and calculus, in each case presenting only material that is most important and relevant for quantitative finance. Each chapter includes finance applications that demonstrate the relevance of the material presented. Problem sets are offered on both the mathematical theory and the finance applications sections of each chapter. The logical organization of the book and the judicious selection of topics make the text customizable for a number of courses. The development is self-contained and carefully explained to support disciplined independent study as well. A solutions manual for students provides solutions to the book's Practice Exercises; an instructor's manual offers solutions to the Assignment Exercises as well as other materials.

Quantitative Finance

Quantitative Finance
Author: T. Wake Epps
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2009-03-23
Genre: Mathematics
ISBN: 9780470455272

A rigorous, yet accessible, introduction to essential topics in mathematical finance Presented as a course on the topic, Quantitative Finance traces the evolution of financial theory and provides an overview of core topics associated with financial investments. With its thorough explanations and use of real-world examples, this book carefully outlines instructions and techniques for working with essential topics found within quantitative finance including portfolio theory, pricing of derivatives, decision theory, and the empirical behavior of prices. The author begins with introductory chapters on mathematical analysis and probability theory, which provide the needed tools for modeling portfolio choice and pricing in discrete time. Next, a review of the basic arithmetic of compounding as well as the relationships that exist among bond prices and spot and forward interest rates is presented.? Additional topics covered include: Dividend discount models Markowitz mean-variance theory The Capital Asset Pricing Model Static?portfolio theory based on the expected-utility paradigm Familiar probability models for marginal distributions of returns and the dynamic behavior of security prices The final chapters of the book delve into the paradigms of pricing and present the application of martingale pricing in advanced models of price dynamics. Also included is a step-by-step discussion on the use of Fourier methods to solve for arbitrage-free prices when underlying price dynamics are modeled in realistic, but complex ways. Throughout the book, the author presents insight on current approaches along with comments on the unique difficulties that exist in the study of financial markets. These reflections illustrate the evolving nature of the financial field and help readers develop analytical techniques and tools to apply in their everyday work. Exercises at the end of most chapters progress in difficulty, and selected worked-out solutions are available in the appendix. In addition, numerous empirical projects utilize MATLAB® and Minitab® to demonstrate the mathematical tools of finance for modeling the behavior of prices and markets. Data sets that accompany these projects can be found via the book's FTP site. Quantitative Finance is an excellent book for courses in quantitative finance or financial engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for practitioners in related fields including engineering, finance, and economics.

Introductory Mathematical Analysis for Quantitative Finance

Introductory Mathematical Analysis for Quantitative Finance
Author: Daniele Ritelli
Publisher: CRC Press
Total Pages: 211
Release: 2020-04-13
Genre: Mathematics
ISBN: 1351245090

Introductory Mathematical Analysis for Quantitative Finance is a textbook designed to enable students with little knowledge of mathematical analysis to fully engage with modern quantitative finance. A basic understanding of dimensional Calculus and Linear Algebra is assumed. The exposition of the topics is as concise as possible, since the chapters are intended to represent a preliminary contact with the mathematical concepts used in Quantitative Finance. The aim is that this book can be used as a basis for an intensive one-semester course. Features: Written with applications in mind, and maintaining mathematical rigor. Suitable for undergraduate or master's level students with an Economics or Management background. Complemented with various solved examples and exercises, to support the understanding of the subject.

Quantitative Finance

Quantitative Finance
Author: Matt Davison
Publisher: CRC Press
Total Pages: 523
Release: 2014-05-08
Genre: Business & Economics
ISBN: 1439871698

Teach Your Students How to Become Successful Working Quants Quantitative Finance: A Simulation-Based Introduction Using Excel provides an introduction to financial mathematics for students in applied mathematics, financial engineering, actuarial science, and business administration. The text not only enables students to practice with the basic techniques of financial mathematics, but it also helps them gain significant intuition about what the techniques mean, how they work, and what happens when they stop working. After introducing risk, return, decision making under uncertainty, and traditional discounted cash flow project analysis, the book covers mortgages, bonds, and annuities using a blend of Excel simulation and difference equation or algebraic formalism. It then looks at how interest rate markets work and how to model bond prices before addressing mean variance portfolio optimization, the capital asset pricing model, options, and value at risk (VaR). The author next focuses on binomial model tools for pricing options and the analysis of discrete random walks. He also introduces stochastic calculus in a nonrigorous way and explains how to simulate geometric Brownian motion. The text proceeds to thoroughly discuss options pricing, mostly in continuous time. It concludes with chapters on stochastic models of the yield curve and incomplete markets using simple discrete models. Accessible to students with a relatively modest level of mathematical background, this book will guide your students in becoming successful quants. It uses both hand calculations and Excel spreadsheets to analyze plenty of examples from simple bond portfolios. The spreadsheets are available on the book’s CRC Press web page.

Mathematics for Finance

Mathematics for Finance
Author: Marek Capinski
Publisher: Springer
Total Pages: 317
Release: 2006-04-18
Genre: Business & Economics
ISBN: 1852338466

This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

An Introduction to Quantitative Finance

An Introduction to Quantitative Finance
Author: Stephen Blyth
Publisher: Oxford University Press, USA
Total Pages: 193
Release: 2014
Genre: Business & Economics
ISBN: 0199666598

The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types. This book gives an insight into financial engineering while building on introductory probability courses by detailing one of the most fascinating applications of the subject.

An Introduction To Machine Learning In Quantitative Finance

An Introduction To Machine Learning In Quantitative Finance
Author: Hao Ni
Publisher: World Scientific
Total Pages: 263
Release: 2021-04-07
Genre: Business & Economics
ISBN: 1786349388

In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!

The Concepts and Practice of Mathematical Finance

The Concepts and Practice of Mathematical Finance
Author: Mark S. Joshi
Publisher: Cambridge University Press
Total Pages: 0
Release: 2008-10-30
Genre: Business & Economics
ISBN: 0521514088

The second edition of a successful text providing the working knowledge needed to become a good quantitative analyst. An ideal introduction to mathematical finance, readers will gain a clear understanding of the intuition behind derivatives pricing, how models are implemented, and how they are used and adapted in practice.