Iodine Catalysis in Organic Synthesis

Iodine Catalysis in Organic Synthesis
Author: Kazuaki Ishihara
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2022-05-16
Genre: Technology & Engineering
ISBN: 3527348298

Iodine Catalysis in Organic Synthesis The first book of its kind to highlight iodine as a sustainable alternative to conventional transition metal catalysis Iodine Catalysis in Organic Synthesis provides detailed coverage of recent advances in iodine chemistry and catalysis, focusing on the utilization of various iodine-containing compounds as oxidative catalysts. Featuring contributions by an international panel of leading research chemists, this authoritative volume explores the development of environmentally benign organic reactions and summarizes catalytic transformations of molecular iodine and iodine compounds such as hypervalent organoiodine and inorganic iodine salts. Readers are first introduced to the history of iodine chemistry, the conceptual background of homogeneous catalysis, and the benefits of iodine catalysis in comparison with transition metals. Next, chapters organized by reaction type examine enantioselective transformations, catalytic reactions involving iodine, catalyst states, oxidation in iodine and iodine catalyses, and catalytic reactions based on halogen bonding. Practical case studies and real-world examples of different applications in organic synthesis and industry are incorporated throughout the text. An invaluable guide for synthetic chemists in both academic and industrial laboratories, Iodine Catalysis in Organic Synthesis: Provides a thorough overview of typical iodine-catalyzed reactions, catalyst systems, structures, and reactivity Explores promising industrial applications of iodine-based reagents for organic synthesis Highlights the advantages iodine catalysis has over classical metal-catalyzed reactions Discusses sustainable and eco-friendly methods in hypervalent iodine chemistry Edited by two world authorities on the catalytic applications of organoiodine compounds, Iodine Catalysis in Organic Synthesis is required reading for catalytic, organic, and organometallic chemists, medicinal and pharmaceutical chemists, industrial chemists, and academic researchers and advanced students in relevant fields.

Iodine Catalysis in Organic Synthesis

Iodine Catalysis in Organic Synthesis
Author: Kazuaki Ishihara
Publisher: John Wiley & Sons
Total Pages: 452
Release: 2022-01-10
Genre: Technology & Engineering
ISBN: 3527829571

Iodine Catalysis in Organic Synthesis The first book of its kind to highlight iodine as a sustainable alternative to conventional transition metal catalysis Iodine Catalysis in Organic Synthesis provides detailed coverage of recent advances in iodine chemistry and catalysis, focusing on the utilization of various iodine-containing compounds as oxidative catalysts. Featuring contributions by an international panel of leading research chemists, this authoritative volume explores the development of environmentally benign organic reactions and summarizes catalytic transformations of molecular iodine and iodine compounds such as hypervalent organoiodine and inorganic iodine salts. Readers are first introduced to the history of iodine chemistry, the conceptual background of homogeneous catalysis, and the benefits of iodine catalysis in comparison with transition metals. Next, chapters organized by reaction type examine enantioselective transformations, catalytic reactions involving iodine, catalyst states, oxidation in iodine and iodine catalyses, and catalytic reactions based on halogen bonding. Practical case studies and real-world examples of different applications in organic synthesis and industry are incorporated throughout the text. An invaluable guide for synthetic chemists in both academic and industrial laboratories, Iodine Catalysis in Organic Synthesis: Provides a thorough overview of typical iodine-catalyzed reactions, catalyst systems, structures, and reactivity Explores promising industrial applications of iodine-based reagents for organic synthesis Highlights the advantages iodine catalysis has over classical metal-catalyzed reactions Discusses sustainable and eco-friendly methods in hypervalent iodine chemistry Edited by two world authorities on the catalytic applications of organoiodine compounds, Iodine Catalysis in Organic Synthesis is required reading for catalytic, organic, and organometallic chemists, medicinal and pharmaceutical chemists, industrial chemists, and academic researchers and advanced students in relevant fields.

Hypervalent Iodine Chemistry

Hypervalent Iodine Chemistry
Author: Viktor V. Zhdankin
Publisher: John Wiley & Sons
Total Pages: 630
Release: 2013-10-01
Genre: Science
ISBN: 1118341309

Hypervalent Iodine Chemistry is the first comprehensive text covering all of the main aspects of the chemistry of organic and inorganic polyvalent iodine compounds, including applications in chemical research, medicine, and industry. Providing a comprehensive overview of the preparation, properties, and synthetic applications of this important class of reagents, the text is presented in the following way: The introductory chapter provides a historical background and describes the general classification of iodine compounds, nomenclature, hypervalent bonding, structural features, and the principles of reactivity of polyvalent iodine compounds. Chapter 2 gives a detailed description of the preparative methods and structural features of all known classes of organic and inorganic derivatives of polyvalent iodine. Chapter 3, the key chapter of the book, deals with the many applications of hypervalent iodine reagents in organic synthesis. Chapter 4 describes the most recent achievements in hypervalent iodine catalysis. Chapter 5 deals with recyclable polymer-supported and nonpolymeric hypervalent iodine reagents. Chapter 6 covers the "green" reactions of hypervalent iodine reagents under solvent-free conditions or in aqueous solutions. The final chapter provides an overview of the important practical applications of polyvalent iodine compounds in medicine and industry. This book is aimed at all chemists interested in iodine compounds, including academic and industrial researchers in inorganic, organic, physical, medicinal, and biological chemistry. It will be particularly useful to synthetic organic and inorganic chemists, including graduate and advanced undergraduate students. It comprehensively covers the green chemistry aspects of hypervalent iodine chemistry, making it especially useful for industrial chemists.

Halogen Bonding in Solution

Halogen Bonding in Solution
Author: Stefan Huber
Publisher: John Wiley & Sons
Total Pages: 418
Release: 2021-04-19
Genre: Technology & Engineering
ISBN: 3527347313

Long-awaited on the importance of halogen bonding in solution, demonstrating the specific advantages in various fields - from synthesis and catalysis to biochemistry and electrochemistry! Halogen bonding (XB) describes the interaction between an electron donor and the electrophilic region of a halogen atom. Its applicability for molecular recognition processes long remained unappreciated and has mostly been studied in solid state until recently. As most physiological processes and chemical reactions take place in solution, investigations in solutions are of highest relevance for its use in organic synthesis and catalysis, pharmaceutical chemistry and drug design, electrochemistry, as well as material synthesis. Halogen Bonding in Solution gives a concise overview of halogen bond interactions in solution. It discusses the history and electronic origin of halogen bonding and summarizes all relevant examples of its application in organocatalysis. It describes the use of molecular iodine in catalysis and industrial applications, as well as recent developments in anion transport and binding. Hot topic: Halogen bonding is an important interaction between molecules or within a molecule. The field has developed considerably in recent years, with numerous different approaches and applications having been published. Unique: There are several books on halogen bonding in solid state available, but this will be the first one focused on halogen bonding in solution. Multi-disciplinary: Summarizes the history and nature of halogen bonding in solution as well as applications in catalysis, anion recognition, biochemistry, and electrochemistry. Aimed at facilitating exciting future developments in the field, Halogen Bonding in Solution is a valuable source of information for researchers and professionals working in the field of supramolecular chemistry, catalysis, biochemistry, drug design, and electrochemistry.

Hypervalent Iodine in Organic Synthesis

Hypervalent Iodine in Organic Synthesis
Author: A. Varvoglis
Publisher: Academic Press
Total Pages: 245
Release: 1996-11-14
Genre: Science
ISBN: 0080534368

This book describes the fascinating chemistry of the many kinds of organic compounds of hypervalent iodine. Each chapter deals with a particular iodine compound or families of compounds which have been used as reagents in a plethora of useful transformations. These include assorted oxidation, such as with the precious Dess-Martin reagent as well as with a wide range of further reactions. Prominent features of hypervalent iodine reagents derived from iodobenzene are: ready availability, operational simplicity, mild reaction conditions, and high efficiency. They are environmentally safe and can be recycled. New species may be easily prepared by introducing substituents in the benzene ring or changing the ligand attached to iodine. Their combination with other reagents broadens considerably their synthetic potential. Today, no synthetic chemist can afford to ignore the valuable hypervalentiodine reagents. - Features up-to-date coverage of a wide range of topics - Includes many tables featuring a diversity of reactivity, and a comprehensive index - Acts as a comprehensive, up-to-date reference on all aspects of hypervalent iodine chemistry - Contains a section on unusual efficiency of hypervalent iodine reactions

Hypervalent Iodine Chemistry

Hypervalent Iodine Chemistry
Author: Thomas Wirth
Publisher: Springer Science & Business Media
Total Pages: 275
Release: 2003-02-12
Genre: Medical
ISBN: 3540441077

T. Wirth: Introduction and General Aspects.- M. Ochiai: Reactivities, Properties and Structures.- A. Varvoglis: Preparation of Hypervalent Iodine Compounds.- V.V. Zhdankin: C-C-Bond Forming Reactions.- G.F. Koser: C- Heteroatom-Bond Forming Reactions.- G.F. Koser: Heteroatom- Heteroatom-Bond Forming Reactions.- T. Wirth: Oxidations and Rearrangements.- H. Tohma, Y. Kita: Synthetic Applications (Total Synthesis and Natural Product Synthesis).

Iodine Chemistry and Applications

Iodine Chemistry and Applications
Author: Tatsuo Kaiho
Publisher: John Wiley & Sons
Total Pages: 668
Release: 2014-10-09
Genre: Science
ISBN: 1118878655

This book comprehensively covers iodine, its chemistry, and its role in functional materials, reagents, and compounds. • Provides an up-to-date, detailed overview of iodine chemistry with discussion on elemental aspects: characteristics, properties, iodides, and halogen bonding • Acts as a useful guide for readers to learn how to synthesize complex compounds using iodine reagents or intermediates • Describes traditional and modern processing techniques, such as starch, cupper, blowing out, and ion exchange resin methods • Includes seven detailed sections devoted to the applications of iodine: Characteristics, Production, Synthesis, Biological Applications, Industrial Applications, Bioorganic Chemistry and Environmental Chemistry, and Radioisotopes • Features hot topics in the field, such as hypervalent iodine-mediated cross coupling reactions, agrochemicals, dye sensitized solar cells, and therapeutic agents

Microreactors in Organic Chemistry and Catalysis

Microreactors in Organic Chemistry and Catalysis
Author: Thomas Wirth
Publisher: John Wiley & Sons
Total Pages: 493
Release: 2013-02-22
Genre: Science
ISBN: 3527659749

For the second edition of 'Microreactors in Organic Chemistry and Catalysis' all chapters have been revised and updated to reflect the latest developments in this rapidly developing field. This new edition has 60% more content, and it remains a comprehensive publication covering most aspects of the topic. The use of microreactors in homogeneous, heterogeneous as well as biphasic reactions is covered in the main part of the book, together with catalytic, bioorganic and automation approaches. The initial chapters also provide a solid physical chemistry background on fluidics in microdevices. Finally, a chapter on industrial applications and developments covers recent progress in process chemistry. An excellent reference for beginners and experts alike.

Green Oxidation in Organic Synthesis

Green Oxidation in Organic Synthesis
Author: Ning Jiao
Publisher: John Wiley & Sons
Total Pages: 531
Release: 2019-09-30
Genre: Science
ISBN: 1119304164

A valuable introduction to green oxidation for organic chemists interested in discovering new strategies and new reactions for oxidative synthesis Green Oxidation in Organic Synthesis provides a comprehensive introduction and overview of chemical preparation by green oxidative processes, an entry point to the growing journal literature on green oxidation in organic synthesis. It discusses both experimental and theoretical approaches for the study of new catalysts and methods for catalytic oxidation and selective oxidation. The book highlights the discovery of new reactions and catalysts in recent years, discussing mechanistic insights into the green oxidative processes, as well as applications in organic synthesis with significant potential to have a major impact in academia and industry. Chapters are organized according to the functional groups generated in the reactions, presenting interesting achievements for functional group formation by green oxidative processes with O2, H2O2, photocatalytic oxidation, electrochemical oxidation, and enzymatic oxidation. The mechanisms of these novel transformations clearly illustrated. Green Oxidation in Organic Synthesis will serve as an excellent reference for organic chemists interested in discovering new strategies for oxidative synthesis which address the priorities of green and sustainable chemistry.