Jacobi Dynamics

Jacobi Dynamics
Author: V.I. Ferronsky
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2012-12-06
Genre: Science
ISBN: 940094800X

This book sets forth and builds upon the fundamentals of the dynamics of natural systems in formulating the problem presented by Jacobi in his famous lecture series "Vorlesungen tiber Dynamik" (Jacobi, 1884). In the dynamics of systems described by models of discrete and continuous media, the many-body problem is usually solved in some approximation, or the behaviour of the medium is studied at each point of the space it occupies. Such an approach requires the system of equations of motion to be written in terms of space co-ordinates and velocities, in which case the requirements of an internal observer for a detailed description of the processes are satisfied. In the dynamics discussed here we study the time behaviour of the fundamental integral characteristics of the physical system, i. e. the Jacobi function (moment of inertia) and energy (potential, kinetic and total), which are functions of mass density distribution, and the structure of a system. This approach satisfies the requirements of an external observer. It is designed to solve the problem of global dynamics and the evolution of natural systems in which the motion of the system's individual elements written in space co-ordinates and velocities is of no interest. It is important to note that an integral approach is made to internal and external interactions of a system which results in radiation and absorption of energy. This effect constitutes the basic physical content of global dynamics and the evolution of natural systems.

Jacobi's Lectures on Dynamics

Jacobi's Lectures on Dynamics
Author: A. Clebsch
Publisher: Springer
Total Pages: 351
Release: 2009-08-15
Genre: Mathematics
ISBN: 9386279622

The name of C. G. J. Jacobi is familiar to every student of mathematics, thanks to the Jacobion determinant, the Hamilton-Jacobi equations in dynamics, and the Jacobi identity for vector fields. Best known for his contributions to the theory of elliptic and abelian functions, Jacobi is also known for his innovative teaching methods and for running the first research seminar in pure mathematics. A record of his lectures on Dynamics given in 1842-43 at Konigsberg, edited by A. Clebsch, has been available in the original German. This is an English translation. It is not just a historical document; the modern reader can learn much about the subject directly from one of its great masters.

Dynamics of the Earth

Dynamics of the Earth
Author: V. I. Ferronsky
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2010-06-28
Genre: Science
ISBN: 9048187230

In their search for solutions to problems concerning the dynamics of the Earth as a self-gravitating body, the authors have applied the fundamentals found in their book “Jacobi Dynamics” (1987, Reidel). First, satellite observations have shown that the Earth does not remain in hydrostatic equilibrium, which forms the physical basis of modern geodynamics. Secondly, satellite data have established a relationship between the planet’s polar moment of inertia and the potential of the Earth’s outer force field, which proves the most basic point of Jacobi dynamics. This allowed the authors to revise their derivation of the classical virial theorem, introducing the concept of a volumetric force and volumetric moment, and so to obtain a generalized virial theorem in the form of Jacobi’s equation. The main dynamical effects are: the kinetic energy of oscillation of the interacting particles, which explains the physical meaning and nature of gravitational forces; separation of shells of a self-gravitating body with respect to its mass density; differences in angular velocities of the shell’s rotation; continuity in variance of the potential of the outer gravitational force field, together with reductions in the envelope of the interacting masses (volumetric center of gravity); the nature of Earth, Moon and satellite precession; the nature and generating mechanism of the planet’s electromagnetic field; the common nature of gravitational and electromagnetic energy, and other related issues. The work is a logical continuation of the book "Jacobi Dynamics" and is intended for researchers, teachers and students engaged in theoretical and experimental research in various branches of astronomy, geophysics, planetology and cosmogony, and for students of celestial, statistical, quantum and relativistic mechanics and hydrodynamics.

Classical Dynamics and Its Quantum Analogues

Classical Dynamics and Its Quantum Analogues
Author: David Park
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2012-12-06
Genre: Science
ISBN: 3642749224

The short Heroic Age of physics that started in 1925 was one of the rare occasions when a deep consideration of the question: What does physics really say? was necessary in carrying out numerical calculations. In many parts of microphysics the calculations have now become relatively straightforward if not easy, but most physicists seem to agree that some questions of principle remain to be resolved, even if they do not think it is very important to do so. This situation has affected the way people think and write about quantum mechanics, a gingerly approach to fundamentals and a tendency to emphasize what fifty years ago was new in the new theory at the expense of continuity with what came before it. Nowadays those who look into the subject are more likely to be struck by unexpected similarities between quantum and classical mechanics than by dramatic contrasts they had been led to expect. It is often said that the hardest part of understanding quantum mechanics is to understand that there is nothing to understand; all the same, to think quantum mechanically it helps to have firm mental connections with classical physics and to know exactly what these connections do and do not imply. This book originated more than a decade ago as informal lecture notes [OP, prepared for use in a course taught from time to time to advanced undergraduates at Williams College.

Analytical Mechanics

Analytical Mechanics
Author: Carl S. Helrich
Publisher: Springer
Total Pages: 359
Release: 2016-10-01
Genre: Science
ISBN: 3319444913

This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.

Gravitation, Inertia and Weightlessness

Gravitation, Inertia and Weightlessness
Author: V.I. Ferronsky
Publisher: Springer
Total Pages: 307
Release: 2016-04-25
Genre: Science
ISBN: 3319322915

This work discusses the problem of physical meaning of the three main dynamical properties of matter motion, namely gravitation, inertia and weightlessness. It considers that Newtonian gravitation and Galileo’s inertia are the centrifugal effects of interaction energy of a self-gravitating n-body system and its potential field. A self-gravitating celestial body appears to be an excellent natural centrifuge that is rotated by the energy of interacting elementary particles. Weightlessness is a consequence of the centrifugal effect of elementary particles interaction that appears at differentiation of a body matter with respect to density. The author analyzes the problem of creation of mass particles and elements from the elementary particles of “dark matter”, and discusses the basic physics of the Jacobi dynamics from the viewpoint of quantum gravitation. Chapters assert that the fundamentals of Jacobi dynamics completely correspond to conditions of natural centrifuges. The centrifuge is an excellent experimental model for the study of dynamical effects in solving the many body problem. In this book, readers may follow the demonstration of some of those studies and follow derivations, solutions and conclusions that provide a solid basis for further research in celestial mechanics, geophysics, astrophysics, geo- and planetary sciences.

Formation of the Solar System

Formation of the Solar System
Author: V.I. Ferronsky
Publisher: Springer Science & Business Media
Total Pages: 314
Release: 2013-02-11
Genre: Science
ISBN: 9400759088

Analysis of the orbital motion of the Earth, the Moon and other planets and their satellites led to the discovery that all bodies in the Solar System are moving with the first cosmic velocity of their proto parents. The mean orbital velocity of each planet is equal to the first cosmic velocity of the Protosun, the radius of which is equal to the semi-major axis of the planet’s orbit. The same applies for the planets’ satellites. All the small planets, comets, other bodies and the Sun itself follow this law, a finding that has also been proven by astronomical observations. The theoretical solutions based on the Jacobi dynamics explain the process of the system creation and decay, as well as the nature of Kepler’s laws.

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations
Author: Maurizio Falcone
Publisher: SIAM
Total Pages: 331
Release: 2014-01-31
Genre: Mathematics
ISBN: 161197304X

This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.