Killer Cell Dynamics

Killer Cell Dynamics
Author: Dominik Wodarz
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2007-04-05
Genre: Mathematics
ISBN: 0387687335

This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.

Natural Killer Cells

Natural Killer Cells
Author: Michael T. Lotze
Publisher: Academic Press
Total Pages: 709
Release: 2009-11-12
Genre: Medical
ISBN: 0080919294

Natural Killer Cells explains the importance of killer cells and how they are produced. It mentions that the most likely explanation for killer cell production is that they serve as a complementary system for T cells as a primary defense against viruses. However, these cells defend against certain viruses only, such as herpes viruses and influenza viruses. The book also explains the primary functions of killer cells, and it discusses how these cells help recognize damaged tissues, limit further damage to tissues, and regenerate damaged tissues. It discusses how these cells mature and develop, and it covers the different isolation, culture, and propagation methods of these cells. Furthermore, it focuses on the different killer cells that are present in various parts of the human body. The book concludes by explaining that natural killer cells are utilized for clinical therapy of malignancies, and that they have led to positive outcomes in the field of biology and medicine. - Provides a broad, detailed coverage of the biology and interactions of NK cells for students, fellows, scientists, and practitioners - Includes figures, histologic sections, and illustrations of the ontogeny of NK cells

Natural Killer Cells

Natural Killer Cells
Author: Srinivas S. Somanchi
Publisher: Humana Press
Total Pages: 365
Release: 2016-05-13
Genre: Medical
ISBN: 9781493936823

This volume contains collection of Natural Killer Cell methodologies relevant for both basic and translational research. These methodologies present new developments in the natural killer (NK) cell field, such as understanding the influence of NK cells metabolism on its function, identifying complexity of NK cell subsets through mass cytometry, and determining the emergence of memory NK cells in murine model of MCMV infection. Methods that study NK cell migration and cytotoxicity through endpoint analysis or live single cell imaging are also discussed. Chapters also describe methods pertaining to translational application of NK cells, such as ex vivo expansion of NK cells on K562 cell lines genetically modified to express either membrane bound IL-15 or membrane bound IL-21, large scale NK cell culture, current techniques for engineering NK cells to express chimeric antigen receptors or chemokine receptors using retroviral vectors, electroporation of mRNA, and the natural phenomenon of trogocytosis. Written in the highly successful Methods in Molecular Biology series format, these chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, Natural Killer Cells: Methods and Protocols is a valuable resource for researchers who not only want to understand mechanisms that govern NK cell behavior and diversity, but also for those who want to understand how to systematically evaluate NK cells for adoptive immunotherapy applications.

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling
Author: Dominik Wodarz
Publisher: World Scientific
Total Pages: 266
Release: 2005-01-24
Genre: Science
ISBN: 9814481874

The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.

The Guide to Investigation of Mouse Pregnancy

The Guide to Investigation of Mouse Pregnancy
Author: B. Anne Croy
Publisher: Academic Press
Total Pages: 829
Release: 2013-12-09
Genre: Science
ISBN: 0123947944

The Guide to Investigation of Mouse Pregnancy is the first publication to cover the mouse placenta or the angiogenic tree the mother develops to support the placenta. This much-needed resource covers monitoring of the cardiovascular system, gestational programming of chronic adult disease, epigenetic regulation, gene imprinting, and stem cells. Offering detailed and integrated information on how drugs, biologics, stress, and manipulations impact pregnancy in the mouse model, this reference highlights techniques used to analyze mouse pregnancy. Joining the ranks of much referenced mouse resources, The Guide to Investigation of Mouse Pregnancy is the only manual providing needed content on pregnancy in animal models for translational medicine and research. - Provides instruction on how to collect pre-clinical data on pregnancy in mouse models for eventual use in human applications - Describes the angiogenic tree the mother's uterus develops to support pregnancy and the monitoring of pregnancy-induced cardiovascular changes - Educates readers on placental cell lineages, decidual development including immune cells, epigenetic regulation, gene imprinting, stem cells, birth and lactation - Discusses how stress, environmental toxicants and other manipulations impact upon placental function and pregnancy success

Virus Dynamics : Mathematical Principles of Immunology and Virology

Virus Dynamics : Mathematical Principles of Immunology and Virology
Author: Martin Nowak
Publisher: Oxford University Press, UK
Total Pages: 253
Release: 2000-11-23
Genre:
ISBN: 0191588512

This groundbreaking book describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals fascinating insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. Structured around the examples of HIV/AIDS and hepatitis B, Nowak and May show how mathematical models can help researchers to understand the detailed dynamics of infection and the effects of antiviral therapy. Models are developed to describe the dynamics of drug resistance, immune responses, viral evolution and mutation, and to optimise the design of therapy and vaccines. - ;We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study. - ;... an excellent introduction to a field that has the potential to advance substantially our understanding of the complex interplay between virus and host - Nature

Concepts of Biology

Concepts of Biology
Author: Samantha Fowler
Publisher:
Total Pages: 0
Release: 2023-05-12
Genre:
ISBN: 9781739015503

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.