Laser Processing and Chemistry

Laser Processing and Chemistry
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
Total Pages: 846
Release: 2011-09-02
Genre: Science
ISBN: 3642176135

Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.

Laser-Induced Chemical Processes

Laser-Induced Chemical Processes
Author: Jeffrey I. Steinfeld
Publisher: Springer Science & Business Media
Total Pages: 283
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1468438638

The possibility of initiating chemical reactions by high-intensity laser exci tation has captured the imagination of chemists and physicists as well as of industrial scientists and the scientifically informed public in general ever since the laser first became available. Initially, great hopes were held that laser-induced chemistry would revolutionize synthetic chemistry, making possible "bond-specific" or "mode-specific" reactions that were impos sible to achieve under thermal equilibrium conditions. Indeed, some of the early work in this area, typically employing high-power continuous-wave sources, was interpreted in just this way. With further investigation, however, a more conservative picture has emerged, with the laser taking its place as one of a number of available methods for initiation of high-energy chemical transformations. Unlike a number of these methods, such as flash photolysis, shock tubes, and electron-beam radiolysis, the laser is capable of a high degree of spatial and molecular localization of deposited energy, which in turn is reflected in such applications as isotope enrichment or localized surface treatments. The use of lasers to initiate chemical processes has led to the discovery of several distinctly new molecular phenomena, foremost among which is that of multiple-photon excitation and dissociation of polyatomic molecules. This research area has received the greatest attention thus far and forms the focus of the present volume.

Laser Processing and Chemistry

Laser Processing and Chemistry
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
Total Pages: 680
Release: 1996
Genre: Mathematics
ISBN:

Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This third edition has been revised and enlarged to cover new topics such as the synthesis of nanoclusters and nanocrystalline films, ultrashort-pulse laser processing, laser polishing, cleaning, and lithography.Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.

Laser Processing and Diagnostics

Laser Processing and Diagnostics
Author: D. Bäuerle
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2013-11-11
Genre: Science
ISBN: 3642823815

Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.

Chemical Processing with Lasers

Chemical Processing with Lasers
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2013-03-09
Genre: Science
ISBN: 3662025051

Materials processing with lasers is a rapidly expanding field which is increasingly captivating the attention of scientists, engineers and manufacturers alike. The aspect of most interest to scientists is provided by the basic interaction mechanisms between the intense light of a laser and materials exposed to a chemically reactive or nonreactive surrounding medium. Engineers and manufacturers see in the laser a new tool which will not only make manufacturing cheaper, faster, cleaner and more accurate but which also opens up entirely new technologies and manufacturing methods that are simply not available using existing techniques. Actual and potential applications range from laser machining to laser-induced materials transformation, coating, patterning, etc. , opening up the prospect of exciting new processing methods for micromechanics, metallurgy, integrated optics, semiconductor manufacture and chemical engineering. This book concentrates on the new and interdisciplinary field of 1 aser-i nduced chemicaZ process i ng of materi als. The techni que permits maskless single-step deposition of thin films of metals, semiconductors or insulators with lateral dimensions ranging from a few tenths of a micrometer up to several centimeters. Moreover, materials removal or synthesis, or surface modifications, such as oxidation, nitridation, reduction, metallization and doping, are also possible within similar dimensions. This book is meant as an introduction. It attempts to cater for the very broad range of specific interests which different groups of readers will have, and this thinking underlies the way in which the material has been arranged.

Laser-induced Graphene

Laser-induced Graphene
Author: Ruquan Ye
Publisher:
Total Pages: 88
Release: 2020-11-30
Genre: Graphene
ISBN: 9789814877275

LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.

Laser-Beam Interactions with Materials

Laser-Beam Interactions with Materials
Author: Martin v. Allmen
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2013-03-07
Genre: Science
ISBN: 3642578136

Laser-Beam Interactions with Materials treats, from a physicist's point of view, the wide variety of processes that lasers can induce in materials. Physical phenomena ranging from optics to shock waves are discussed, as are applications in such diverse fields as semiconductor annealing, hole drilling and fusion plasma production. The approach taken emphasizes the fundamental ideas and their interrelations. The newcomer is given the necessary important background material, while the active research worker finds a critical and comprehensive review of the field.

Laser-induced Breakdown Spectroscopy (LIBS)

Laser-induced Breakdown Spectroscopy (LIBS)
Author: Andrzej W. Miziolek
Publisher:
Total Pages: 640
Release: 2014-05-14
Genre: Laser spectroscopy
ISBN: 9780511246692

This is the first comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.

Photoionization and Photo-Induced Processes in Mass Spectrometry

Photoionization and Photo-Induced Processes in Mass Spectrometry
Author: Ralf Zimmermann
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2021-07-06
Genre: Science
ISBN: 3527335102

Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.