Learn AI-Assisted Python Programming, Second Edition

Learn AI-Assisted Python Programming, Second Edition
Author: Leo Porter
Publisher: Simon and Schuster
Total Pages: 334
Release: 2024-10-29
Genre: Computers
ISBN: 1638355770

See how an AI assistant can bring your ideas to life immediately! Once, to be a programmer you had to write every line of code yourself. Now tools like GitHub Copilot can instantly generate working programs based on your description in plain English. An instant bestseller, Learn AI-Assisted Python Programming has taught thousands of aspiring programmers how to write Python the easy way—with the help of AI. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming, Second Edition you’ll learn how to: • Write fun and useful Python applications—no programming experience required! • Use the GitHub Copilot AI coding assistant to create Python programs • Write prompts that tell Copilot exactly what to do • Read Python code and understand what it does • Test your programs to make sure they work the way you want them to • Fix code with prompt engineering or human tweaks • Apply Python creatively to help out on the job AI moves fast, and so the new edition of Learn AI-Assisted Python Programming, Second Edition is fully updated to take advantage of the latest models and AI coding tools. Written by two esteemed computer science university professors, it teaches you everything you need to start programming Python in an AI-first world. You’ll learn skills you can use to create working apps for data analysis, automating tedious tasks, and even video games. Plus, in this new edition, you’ll find groundbreaking techniques for breaking down big software projects into smaller tasks AI can easily achieve. Foreword by Beth Simon. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside • Prompts for working code • Tweak code manually and with AI help • AI-test your programs • Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with GitHub Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code: Part 1 5 Reading Python code: Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Creating an authorship identification program 12 Future directions

Learn AI-Assisted Python Programming, Second Edition

Learn AI-Assisted Python Programming, Second Edition
Author: Leo Porter
Publisher: Simon and Schuster
Total Pages: 334
Release: 2024-10-29
Genre: Computers
ISBN: 1633435997

See how an AI assistant can bring your ideas to life immediately! Once, to be a programmer you had to write every line of code yourself. Now tools like GitHub Copilot can instantly generate working programs based on your description in plain English. An instant bestseller, Learn AI-Assisted Python Programming has taught thousands of aspiring programmers how to write Python the easy way--with the help of AI. It's perfect for beginners, or anyone who's struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming, Second Edition you'll learn how to: - Write fun and useful Python applications--no programming experience required! - Use the GitHub Copilot AI coding assistant to create Python programs - Write prompts that tell Copilot exactly what to do - Read Python code and understand what it does - Test your programs to make sure they work the way you want them to - Fix code with prompt engineering or human tweaks - Apply Python creatively to help out on the job AI moves fast, and so the new edition of Learn AI-Assisted Python Programming, Second Edition is fully updated to take advantage of the latest models and AI coding tools. Written by two esteemed computer science university professors, it teaches you everything you need to start programming Python in an AI-first world. You'll learn skills you can use to create working apps for data analysis, automating tedious tasks, and even video games. Plus, in this new edition, you'll find groundbreaking techniques for breaking down big software projects into smaller tasks AI can easily achieve. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology AI has changed the way we write computer programs forever. You describe in plain English what you want your program to do, and AI coding assistants like Github Copilot can generate the code for you instantly! If you can use a web browser and move files around on your computer, you can create useful software. This book shows you how. About the book Learn AI-Assisted Python Programming, Second Edition teaches you how to create your own games, tools, and other simple applications using Copilot and the user-friendly Python language. You'll be amazed how quickly you can go from an idea to a working program! Authors Leo Porter and Dan Zingaro guide you step by step as you go from creating simple functions, like a small program that tells you if a password is strong enough, to writing games and tools that help you automate tedious tasks. As you go, you'll learn just enough Python to understand and improve what Copilot creates. About the reader No experience required! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan.

Learn AI-assisted Python Programming

Learn AI-assisted Python Programming
Author: Leo Porter
Publisher: Simon and Schuster
Total Pages: 461
Release: 2024-01-09
Genre: Computers
ISBN: 1638353859

Writing computer programs in Python just got a lot easier! Use AI-assisted coding tools like GitHub Copilot and ChatGPT to turn your ideas into applications faster than ever. AI has changed the way we write computer programs. With tools like Copilot and ChatGPT, you can describe what you want in plain English, and watch your AI assistant generate the code right before your eyes. It’s perfect for beginners, or anyone who’s struggled with the steep learning curve of traditional programming. In Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT you’ll learn how to: Write fun and useful Python applications—no programming experience required! Use the Copilot AI coding assistant to create Python programs Write prompts that tell Copilot exactly what to do Read Python code and understand what it does Test your programs to make sure they work the way you want them to Fix code with prompt engineering or human tweaks Apply Python creatively to help out on the job Learn AI-Assisted Python Programming: With GitHub Copilot and ChatGPT is a hands-on beginner’s guide that is written by two esteemed computer science university professors. It teaches you everything you need to start programming Python in an AI-first world. You’ll hit the ground running, writing prompts that tell your AI-assistant exactly what you want your programs to do. Along the way, you’ll pick up the essentials of Python programming and practice the higher-level thinking you’ll need to create working apps for data analysis, automating tedious tasks, and even video games. Foreword by Beth Simon, Ph.D. About the technology The way people write computer programs has changed forever. Using GitHub Copilot, you describe in plain English what you want your program to do, and the AI generates it instantly. About the book This book shows you how to create and improve Python programs using AI—even if you’ve never written a line of computer code before. Spend less time on the slow, low-level programming details and instead learn how an AI assistant can bring your ideas to life immediately. As you go, you’ll even learn enough of the Python language to understand and improve what your AI assistant creates. What's inside Prompts for working code Tweak code manually and with AI help AI-test your programs Let AI handle tedious details About the reader If you can move files around on your computer and install new programs, you can learn to write useful software! About the author Dr. Leo Porter is a Teaching Professor at UC San Diego. Dr. Daniel Zingaro is an Associate Teaching Professor at the University of Toronto. The technical editor on this book was Peter Morgan. Table of Contents 1 Introducing AI-assisted programming with Copilot 2 Getting started with Copilot 3 Designing functions 4 Reading Python code – Part 1 5 Reading Python Code – Part 2 6 Testing and prompt engineering 7 Problem decomposition 8 Debugging and better understanding your code 9 Automating tedious tasks 10 Making some games 11 Future directions

Scwcd Exam Study Kit

Scwcd Exam Study Kit
Author: Hanumant Deshmukh
Publisher: Manning Publications
Total Pages: 531
Release: 2005-04-01
Genre: Computers
ISBN: 9781932394382

Aimed at helping Java developers, Servlet/JSP developers, and J2EE developers pass the Sun Certified Web Component Developer Exam (SCWCD 310-081), this study guide covers all aspects of the Servlet and JSP technology that Sun has determined necessary. This new edition adds aspects of servlet/JSP development, such as the Expression language, and updated materials of servlets with a particular focus on using filters to make request processing more efficient. Covering the reliance on the JSP Standard Template Library (JSTL) and its core, this guide allows JSP developers will be able to simplify their development process and remove Java-based scriptlets and expressions from their code. All applications in this book are designed to run on Apache's latest development server, Tomcat 5.0, and instructions on how to install this new edition and execute servlets and JSPs are included.

Artificial Intelligence with Python

Artificial Intelligence with Python
Author: Alberto Artasanchez
Publisher: Packt Publishing Ltd
Total Pages: 619
Release: 2020-01-31
Genre: Computers
ISBN: 1839216077

New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.

How Computers Make Books

How Computers Make Books
Author: John Whitington
Publisher: Simon and Schuster
Total Pages: 174
Release: 2024-06-06
Genre: Computers
ISBN: 1638354383

Learn about computer science by exploring the fascinating journey it took to make this book! How Computers Make Books introduces what’s wonderful about computer science by showing how computers have transformed the art of publishing books. Author and publishing software developer John Whitington reveals the elegant computer science solutions invented to solve big publishing challenges. In How Computers Make Books you’ll discover: How human descriptions are translated into computer programs How a computer can understand document formatting How a program decides where to print ink on a page Why computer science is so interesting to computer scientists, and why it might interest you …and much more! How do computers represent all the different languages and letters used by humans? How do we compress a book’s worth of complex information so it can be transferred in seconds? And what exactly is a computer program? This book answers all those questions by telling the story of how it was created! About the technology Computers are part of every step in creating a book, from capturing the author’s words as a digital document to controlling how the ink gets onto the paper. How Computers Make Books introduces basic computer science concepts like file formatting, transfer, and storage, computer programming, and task automation by guiding you through the modern digital printing process. About the book This book takes you on a journey from the plain white page, weaving through typesetting, making gray images from black ink, electronic file formats, and more. It makes computer science come alive as you see how every word, illustration, and page has its own story. You’ll even learn to write your own simple programs and discover hands-on what’s so intoxicating about computer science. What's inside How human descriptions are translated into computer programs How a digital computer thinks about print documents How a program decides where to print ink on a page How the history of typesetting shows up in modern books About the reader For the curious-but-clueless about computer science—and anyone interested in how computers make books! About the author John Whitington is the founder of a company that builds software for electronic document processing. He has studied and taught Computer Science at Queens’ College, Cambridge. Technical editor on this book was Bojan Stojanovic. Table of Contents 1 Putting marks on paper 2 Letter forms 3 Storing words 4 Looking and finding 5 Typing it in 6 Saving space 7 The sums behind the screen 8 Gray areas 9 A typeface 10 Words to paragraphs 11 Out into the world

Algorithmic Thinking

Algorithmic Thinking
Author: Daniel Zingaro
Publisher: No Starch Press
Total Pages: 409
Release: 2020-12-15
Genre: Computers
ISBN: 1718500807

A hands-on, problem-based introduction to building algorithms and data structures to solve problems with a computer. Algorithmic Thinking will teach you how to solve challenging programming problems and design your own algorithms. Daniel Zingaro, a master teacher, draws his examples from world-class programming competitions like USACO and IOI. You'll learn how to classify problems, choose data structures, and identify appropriate algorithms. You'll also learn how your choice of data structure, whether a hash table, heap, or tree, can affect runtime and speed up your algorithms; and how to adopt powerful strategies like recursion, dynamic programming, and binary search to solve challenging problems. Line-by-line breakdowns of the code will teach you how to use algorithms and data structures like: The breadth-first search algorithm to find the optimal way to play a board game or find the best way to translate a book Dijkstra's algorithm to determine how many mice can exit a maze or the number of fastest routes between two locations The union-find data structure to answer questions about connections in a social network or determine who are friends or enemies The heap data structure to determine the amount of money given away in a promotion The hash-table data structure to determine whether snowflakes are unique or identify compound words in a dictionary NOTE: Each problem in this book is available on a programming-judge website. You'll find the site's URL and problem ID in the description. What's better than a free correctness check?

Invariants

Invariants
Author: Daniel Zingaro
Publisher:
Total Pages: 188
Release: 2008
Genre: Computers
ISBN: 9781904987833

Algorithms are central to all areas of computer science, from compiler construction to numerical analysis to artificial intelligence. Throughout your academic and professional careers, you may be required to construct new algorithms, analyze existing algorithms, or modify algorithms to suit new purposes. How do we know that such algorithms are correct? One method involves making claims about how we expect our programs to operate, and then constructing code that carries out these tasks. The key component of such reasoning is the invariant, and is the topic of this book. In these pages, you will study how invariants are developed, how they are used to construct correct algorithms, and how they are helpful in analyzing existing programs. Along the way, you'll be introduced to some classic sorting, searching and mathematical algorithms, and even some solutions to games and logic puzzles. These examples, though, are only conduits for the loftier goal: understanding why algorithms work.

AI and Machine Learning for Coders

AI and Machine Learning for Coders
Author: Laurence Moroney
Publisher: O'Reilly Media
Total Pages: 393
Release: 2020-10-01
Genre: Computers
ISBN: 1492078166

If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving