Learning to See Data

Learning to See Data
Author: Ben Jones
Publisher: Data Literacy Press
Total Pages: 1
Release: 2020-12-15
Genre: Business & Economics
ISBN: 1733263454

This book is associated with the 'Data Literacy Level 1' on-demand online course: https://dataliteracy.com/courses/data-literacy-level-1 For most of us, it's rare to go a full day without coming across data in the form of a chart, map or dashboard. Graphical displays of data are all around us, from performance indicators at work to election trackers on the news to traffic maps on the road. But few of us have received training or instruction in how to actually read and interpret them. How many times have we been misled simply because we aren't aware of the pitfalls to avoid when interpreting data visualizations. Learning to See Data will teach you the different ways that data can be encoded in graphical form, and it will give you a deeper understanding of the way our human visual system interprets these encodings. You will also learn about the most common chart types, and the situations in which they are most appropriate. From basic bar charts to overused pie charts to helpful maps and many more, a wide array of chart types are covered in detail, and conventions, pitfalls, strengths and weaknesses of each of them are revealed. This book will help you develop fluency in the interpretation of charts, an ability that we all need to hone and perfect if we are to make meaningful contributions in the professional, public and personal arenas of life. The principles covered in it also serve as a critical background for anyone looking to create charts that others will be able to understand. "This book is clear and evocative, thorough and thoughtful, and remarkably readable: a marvelous launchpad into the world of data." –Tamara Munzner, Professor, University of British Columbia Computer Science "Everyone of us needs good data literacy skills to survive in the modern world. Without them, it's hard to succeed at work, or survive the onslaught of information (and misinformation) across all our media. Ben's book provides the necessary building blocks for a strong foundation. From that foundation, Ben's approach will inspire you to own the process of developing your skills further." –Andy Cotgreave, Technical Evangelism Director, Tableau

Learning to See

Learning to See
Author: Mike Rother
Publisher: Lean Enterprise Institute
Total Pages: 115
Release: 2003
Genre: Business & Economics
ISBN: 0966784308

Lean production is the gold standard in production systems, but has proven famously difficult to implement in North America. Mass production relies on large inventories, uses "push" processes and struggles with long lead times. Moving towards a system that eliminates muda ("waste") caused by overproduction, while challenging, proves necessary for improved efficiency. Often overlooked, value stream mapping is the essential planning stage for any Lean transformation. In Mike Rother and John Shook's essential guide, you follow the value stream mapping undertaken for Acme Stamping, for its current and future state. Fully illustrated and well-organized, Learning to See is a must-see for the value stream manager.

Using Data to Improve Student Learning in School Districts

Using Data to Improve Student Learning in School Districts
Author: Victoria Bernhardt
Publisher: Routledge
Total Pages: 449
Release: 2013-10-11
Genre: Education
ISBN: 1317922859

This book helps you make sense of the data your school district collects, including state student achievement results as well as other qualitative and quantitative data. Easy-to-use templates, tools, and examples are available on the accompanying downloadable resources.

The Big R-Book

The Big R-Book
Author: Philippe J. S. De Brouwer
Publisher: John Wiley & Sons
Total Pages: 928
Release: 2020-10-27
Genre: Mathematics
ISBN: 1119632722

Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling. Part 5 teaches readers about exploring data. In Part 6 we learn to build models, Part 7 introduces the reader to the reality in companies, Part 8 covers reports and interactive applications and finally Part 9 introduces the reader to big data and performance computing. It also includes some helpful appendices. Provides a practical guide for non-experts with a focus on business users Contains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reporting Uses a practical tone and integrates multiple topics in a coherent framework Demystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in R Shows readers how to visualize results in static and interactive reports Supplementary materials includes PDF slides based on the book’s content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site The Big R-Book is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models.

Demystifying Big Data and Machine Learning for Healthcare

Demystifying Big Data and Machine Learning for Healthcare
Author: Prashant Natarajan
Publisher: CRC Press
Total Pages: 227
Release: 2017-02-15
Genre: Medical
ISBN: 1315389304

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Learning from Data

Learning from Data
Author: Vladimir Cherkassky
Publisher: John Wiley & Sons
Total Pages: 560
Release: 2007-09-10
Genre: Computers
ISBN: 9780470140512

An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.

Deep Learning with Structured Data

Deep Learning with Structured Data
Author: Mark Ryan
Publisher: Simon and Schuster
Total Pages: 262
Release: 2020-12-08
Genre: Computers
ISBN: 163835717X

Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps

Transforming Teaching and Learning Through Data-Driven Decision Making

Transforming Teaching and Learning Through Data-Driven Decision Making
Author: Ellen B. Mandinach
Publisher: Corwin Press
Total Pages: 281
Release: 2012-04-10
Genre: Business & Economics
ISBN: 1412982049

"Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management."--Publisher's description.

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance
Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
Total Pages: 432
Release: 2020-10-01
Genre: Computers
ISBN: 1492073008

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations