Lectures on Geometric Variational Problems

Lectures on Geometric Variational Problems
Author: Seiki Nishikawa
Publisher: Springer Science & Business Media
Total Pages: 160
Release: 2012-12-06
Genre: Mathematics
ISBN: 4431684026

In this volume are collected notes of lectures delivered at the First In ternational Research Institute of the Mathematical Society of Japan. This conference, held at Tohoku University in July 1993, was devoted to geometry and global analysis. Subsequent to the conference, in answer to popular de mand from the participants, it was decided to publish the notes of the survey lectures. Written by the lecturers themselves, all experts in their respective fields, these notes are here presented in a single volume. It is hoped that they will provide a vivid account of the current research, from the introduc tory level up to and including the most recent results, and will indicate the direction to be taken by future researeh. This compilation begins with Jean-Pierre Bourguignon's notes entitled "An Introduction to Geometric Variational Problems," illustrating the gen eral framework of the field with many examples and providing the reader with a broad view of the current research. Following this, Kenji Fukaya's notes on "Geometry of Gauge Fields" are concerned with gauge theory and its applications to low-dimensional topology, without delving too deeply into technical detail. Special emphasis is placed on explaining the ideas of infi nite dimensional geometry that, in the literature, are often hidden behind rigorous formulations or technical arguments.

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Author: Francesco Maggi
Publisher: Cambridge University Press
Total Pages: 475
Release: 2012-08-09
Genre: Mathematics
ISBN: 1139560891

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

A Mathematical Introduction to String Theory

A Mathematical Introduction to String Theory
Author: Sergio Albeverio
Publisher: Cambridge University Press
Total Pages: 148
Release: 1997-07-17
Genre: Mathematics
ISBN: 9780521556101

This book deals with the mathematical aspects of string theory.

Variational Problems in Differential Geometry

Variational Problems in Differential Geometry
Author: Roger Bielawski
Publisher: Cambridge University Press
Total Pages: 217
Release: 2011-10-20
Genre: Mathematics
ISBN: 1139504118

The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.

Variational Analysis

Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
Total Pages: 747
Release: 2009-06-26
Genre: Mathematics
ISBN: 3642024319

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Two-Dimensional Geometric Variational Problems

Two-Dimensional Geometric Variational Problems
Author: Jürgen Jost
Publisher:
Total Pages: 256
Release: 1991-03-29
Genre: Mathematics
ISBN:

This monograph treats variational problems for mappings from a surface equipped with a conformal structure into Euclidean space or a Riemannian manifold. Presents a general theory of such variational problems, proving existence and regularity theorems with particular conceptual emphasis on the geometric aspects of the theory and thorough investigation of the connections with complex analysis. Among the topics covered are: Plateau's problem, the regularity theory of solutions, a variational approach for obtaining various conformal representation theorems, a general existence theorem for harmonic mappings, and a new approach to Teichmuller theory via harmonic maps.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
Total Pages: 240
Release: 2004-10-27
Genre: Mathematics
ISBN: 354045330X

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Measure Theory and Fine Properties of Functions

Measure Theory and Fine Properties of Functions
Author: LawrenceCraig Evans
Publisher: Routledge
Total Pages: 286
Release: 2018-04-27
Genre: Mathematics
ISBN: 1351432826

This book provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space and emphasizes the roles of Hausdorff measure and the capacity in characterizing the fine properties of sets and functions. Topics covered include a quick review of abstract measure theory, theorems and differentiation in Mn, lower Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions and functions of bounded variation. The text provides complete proofs of many key results omitted from other books, including Besicovitch's Covering Theorem, Rademacher's Theorem (on the differentiability a.e. of Lipschitz functions), the Area and Coarea Formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Alexandro's Theorem (on the twice differentiability a.e. of convex functions). Topics are carefully selected and the proofs succinct, but complete, which makes this book ideal reading for applied mathematicians and graduate students in applied mathematics.