Linear Models and the Relevant Distributions and Matrix Algebra

Linear Models and the Relevant Distributions and Matrix Algebra
Author: David A. Harville
Publisher: CRC Press
Total Pages: 242
Release: 2023-10-23
Genre: Mathematics
ISBN: 1000983757

• Exercises and solutions are included throughout, from both the first and second volume • Includes coverage of additional topics not covered in the first volume • Highly valuable as a reference book for graduate students or researchers

Linear Models and the Relevant Distributions and Matrix Algebra

Linear Models and the Relevant Distributions and Matrix Algebra
Author: David A. Harville
Publisher: CRC Press
Total Pages: 1030
Release: 2023-10-23
Genre: Mathematics
ISBN: 1000983811

Linear Models and the Relevant Distributions and Matrix Algebra: A Unified Approach, Volume 2 covers several important topics that were not included in the first volume. The second volume complements the first, providing detailed solutions to the exercises in both volumes, thereby greatly enhancing its appeal for use in advanced statistics programs. This volume can serve as a valuable reference. It can also serve as a resource in a mathematical statistics course for use in illustrating various theoretical concepts in the context of a relatively complex setting of great practical importance. Together with the first volume, this volume provides a largely self-contained treatment of an important area of statistics and should prove highly useful to graduate students and others. Key Features: • Includes solutions to the exercises from both the first and second volumes • Includes coverage of several topics not covered in the first volume • Highly valuable as a reference book for graduate students and researchers

Linear Models in Statistics

Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
Total Pages: 690
Release: 2008-01-07
Genre: Mathematics
ISBN: 0470192607

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Linear Algebra and Linear Models

Linear Algebra and Linear Models
Author: Ravindra B. Bapat
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2008-01-18
Genre: Mathematics
ISBN: 038722601X

This book provides a rigorous introduction to the basic aspects of the theory of linear estimation and hypothesis testing, covering the necessary prerequisites in matrices, multivariate normal distribution and distributions of quadratic forms along the way. It will appeal to advanced undergraduate and first-year graduate students, research mathematicians and statisticians.

A First Course in Linear Model Theory

A First Course in Linear Model Theory
Author: Nalini Ravishanker
Publisher: CRC Press
Total Pages: 494
Release: 2001-12-21
Genre: Mathematics
ISBN: 9781584882473

This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

Linear Models

Linear Models
Author: Shayle R. Searle
Publisher: John Wiley & Sons
Total Pages: 565
Release: 1997-03-28
Genre: Mathematics
ISBN: 0471184993

This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

Foundations of Linear and Generalized Linear Models

Foundations of Linear and Generalized Linear Models
Author: Alan Agresti
Publisher: John Wiley & Sons
Total Pages: 471
Release: 2015-02-23
Genre: Mathematics
ISBN: 1118730038

A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Matrix Algebra

Matrix Algebra
Author: James E. Gentle
Publisher: Springer Science & Business Media
Total Pages: 536
Release: 2007-07-27
Genre: Computers
ISBN: 0387708723

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

Design of Experiments for Generalized Linear Models

Design of Experiments for Generalized Linear Models
Author: Kenneth G. Russell
Publisher: CRC Press
Total Pages: 260
Release: 2018-12-14
Genre: Mathematics
ISBN: 0429614411

Generalized Linear Models (GLMs) allow many statistical analyses to be extended to important statistical distributions other than the Normal distribution. While numerous books exist on how to analyse data using a GLM, little information is available on how to collect the data that are to be analysed in this way. This is the first book focusing specifically on the design of experiments for GLMs. Much of the research literature on this topic is at a high mathematical level, and without any information on computation. This book explains the motivation behind various techniques, reduces the difficulty of the mathematics, or moves it to one side if it cannot be avoided, and gives examples of how to write and run computer programs using R. Features The generalisation of the linear model to GLMs Background mathematics, and the use of constrained optimisation in R Coverage of the theory behind the optimality of a design Individual chapters on designs for data that have Binomial or Poisson distributions Bayesian experimental design An online resource contains R programs used in the book This book is aimed at readers who have done elementary differentiation and understand minimal matrix algebra, and have familiarity with R. It equips professional statisticians to read the research literature. Nonstatisticians will be able to design their own experiments by following the examples and using the programs provided.