Linear Programming and Algorithms for Communication Networks

Linear Programming and Algorithms for Communication Networks
Author: Eiji Oki
Publisher: CRC Press
Total Pages: 208
Release: 2012-08-24
Genre: Computers
ISBN: 1466552646

Explaining how to apply to mathematical programming to network design and control, Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network Design, Control, and Management fills the gap between mathematical programming theory and its implementation in communication networks. From the basics all the way through to m

Linear Programming and Algorithms for Communication Networks

Linear Programming and Algorithms for Communication Networks
Author: Eiji Oki
Publisher: CRC Press
Total Pages: 208
Release: 2012-08-24
Genre: Computers
ISBN: 1466578602

Explaining how to apply to mathematical programming to network design and control, Linear Programming and Algorithms for Communication Networks: A Practical Guide to Network Design, Control, and Management fills the gap between mathematical programming theory and its implementation in communication networks. From the basics all the way through to m

Linear Network Optimization

Linear Network Optimization
Author: Dimitri P. Bertsekas
Publisher: MIT Press
Total Pages: 384
Release: 1991
Genre: Business & Economics
ISBN: 9780262023344

Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.

Network Optimization Problems: Algorithms, Applications And Complexity

Network Optimization Problems: Algorithms, Applications And Complexity
Author: Ding-zhu Du
Publisher: World Scientific
Total Pages: 417
Release: 1993-04-27
Genre:
ISBN: 9814504580

In the past few decades, there has been a large amount of work on algorithms for linear network flow problems, special classes of network problems such as assignment problems (linear and quadratic), Steiner tree problem, topology network design and nonconvex cost network flow problems.Network optimization problems find numerous applications in transportation, in communication network design, in production and inventory planning, in facilities location and allocation, and in VLSI design.The purpose of this book is to cover a spectrum of recent developments in network optimization problems, from linear networks to general nonconvex network flow problems./a

Graphs and Algorithms in Communication Networks

Graphs and Algorithms in Communication Networks
Author: Arie Koster
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2009-12-01
Genre: Computers
ISBN: 3642022502

Algorithmic discrete mathematics plays a key role in the development of information and communication technologies, and methods that arise in computer science, mathematics and operations research – in particular in algorithms, computational complexity, distributed computing and optimization – are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 – a four-year program of multidisciplinary research on this subject. In this book they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics.

Graphs and Algorithms in Communication Networks

Graphs and Algorithms in Communication Networks
Author: Arie Koster
Publisher: Springer
Total Pages: 426
Release: 2012-03-14
Genre: Computers
ISBN: 9783642261633

Algorithmic discrete mathematics plays a key role in the development of information and communication technologies, and methods that arise in computer science, mathematics and operations research – in particular in algorithms, computational complexity, distributed computing and optimization – are vital to modern services such as mobile telephony, online banking and VoIP. This book examines communication networking from a mathematical viewpoint. The contributing authors took part in the European COST action 293 – a four-year program of multidisciplinary research on this subject. In this book they offer introductory overviews and state-of-the-art assessments of current and future research in the fields of broadband, optical, wireless and ad hoc networks. Particular topics of interest are design, optimization, robustness and energy consumption. The book will be of interest to graduate students, researchers and practitioners in the areas of networking, theoretical computer science, operations research, distributed computing and mathematics.

Geometric Programming for Communication Systems

Geometric Programming for Communication Systems
Author: Mung Chiang
Publisher: Now Publishers Inc
Total Pages: 172
Release: 2005
Genre: Computers
ISBN: 9781933019093

Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.

Algorithms

Algorithms
Author: Sanjoy Dasgupta
Publisher: McGraw-Hill Higher Education
Total Pages: 338
Release: 2006
Genre: Computer algorithms
ISBN: 0077388496

This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text DasGupta also offers a Solutions Manual which is available on the Online Learning Center."Algorithms is an outstanding undergraduate text equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel it is a joy to read." Tim Roughgarden Stanford University

Optimization of Computer Networks

Optimization of Computer Networks
Author: Pablo Pavón Mariño
Publisher: John Wiley & Sons
Total Pages: 399
Release: 2016-05-02
Genre: Technology & Engineering
ISBN: 1119013356

This book covers the design and optimization of computer networks applying a rigorous optimization methodology, applicable to any network technology. It is organized into two parts. In Part 1 the reader will learn how to model network problems appearing in computer networks as optimization programs, and use optimization theory to give insights on them. Four problem types are addressed systematically – traffic routing, capacity dimensioning, congestion control and topology design. Part 2 targets the design of algorithms that solve network problems like the ones modeled in Part 1. Two main approaches are addressed – gradient-like algorithms inspiring distributed network protocols that dynamically adapt to the network, or cross-layer schemes that coordinate the cooperation among protocols; and those focusing on the design of heuristic algorithms for long term static network design and planning problems. Following a hands-on approach, the reader will have access to a large set of examples in real-life technologies like IP, wireless and optical networks. Implementations of models and algorithms will be available in the open-source Net2Plan tool from which the user will be able to see how the lessons learned take real form in algorithms, and reuse or execute them to obtain numerical solutions. An accompanying link to the author’s own Net2plan software enables readers to produce numerical solutions to a multitude of real-life problems in computer networks (www.net2plan.com).