Logic and Implication

Logic and Implication
Author: Petr Cintula
Publisher: Springer Nature
Total Pages: 465
Release: 2022-01-01
Genre: Philosophy
ISBN: 3030856755

This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.

Discrete Mathematics

Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
Total Pages: 238
Release: 2018-07-30
Genre:
ISBN: 9781724572639

Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.

A Spiral Workbook for Discrete Mathematics

A Spiral Workbook for Discrete Mathematics
Author: Harris Kwong
Publisher: Open SUNY Textbooks
Total Pages: 298
Release: 2015-11-06
Genre: Mathematics
ISBN: 9781942341161

A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills.

SQL and Relational Theory

SQL and Relational Theory
Author: C. Date
Publisher: "O'Reilly Media, Inc."
Total Pages: 447
Release: 2011-12-16
Genre: Computers
ISBN: 1449316409

SQL is full of difficulties and traps for the unwary. You can avoid them if you understand relational theory, but only if you know how to put the theory into practice. In this insightful book, author C.J. Date explains relational theory in depth, and demonstrates through numerous examples and exercises how you can apply it directly to your use of SQL. This second edition includes new material on recursive queries, “missing information” without nulls, new update operators, and topics such as aggregate operators, grouping and ungrouping, and view updating. If you have a modest-to-advanced background in SQL, you’ll learn how to deal with a host of common SQL dilemmas. Why is proper column naming so important? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Is it possible to write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports “quantified comparisons,” but they’re better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don’t support them properly. What can you do to resolve this situation? Database theory and practice have evolved since the relational model was developed more than 40 years ago. SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of SQL available. C.J. Date has a stature that is unique within the database industry. A prolific writer well known for the bestselling textbook An Introduction to Database Systems (Addison-Wesley), he has an exceptionally clear style when writing about complex principles and theory.

An Introduction to Formal Logic

An Introduction to Formal Logic
Author: Peter Smith
Publisher: Cambridge University Press
Total Pages: 370
Release: 2003-11-06
Genre: Mathematics
ISBN: 9780521008044

Formal logic provides us with a powerful set of techniques for criticizing some arguments and showing others to be valid. These techniques are relevant to all of us with an interest in being skilful and accurate reasoners. In this highly accessible book, Peter Smith presents a guide to the fundamental aims and basic elements of formal logic. He introduces the reader to the languages of propositional and predicate logic, and then develops formal systems for evaluating arguments translated into these languages, concentrating on the easily comprehensible 'tree' method. His discussion is richly illustrated with worked examples and exercises. A distinctive feature is that, alongside the formal work, there is illuminating philosophical commentary. This book will make an ideal text for a first logic course, and will provide a firm basis for further work in formal and philosophical logic.

Trends in Logic

Trends in Logic
Author: Vincent F. Hendricks
Publisher: Springer Science & Business Media
Total Pages: 387
Release: 2013-03-09
Genre: Philosophy
ISBN: 9401735980

In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.

Goal-Directed Proof Theory

Goal-Directed Proof Theory
Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 2000-08-31
Genre: Philosophy
ISBN: 9780792364733

Goal Directed Proof Theory presents a uniform and coherent methodology for automated deduction in non-classical logics, the relevance of which to computer science is now widely acknowledged. The methodology is based on goal-directed provability. It is a generalization of the logic programming style of deduction, and it is particularly favourable for proof search. The methodology is applied for the first time in a uniform way to a wide range of non-classical systems, covering intuitionistic, intermediate, modal and substructural logics. The book can also be used as an introduction to these logical systems form a procedural perspective. Readership: Computer scientists, mathematicians and philosophers, and anyone interested in the automation of reasoning based on non-classical logics. The book is suitable for self study, its only prerequisite being some elementary knowledge of logic and proof theory.

Mathematical Logic through Python

Mathematical Logic through Python
Author: Yannai A. Gonczarowski
Publisher: Cambridge University Press
Total Pages: 286
Release: 2022-07-31
Genre: Computers
ISBN: 1108957692

Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Gödel's completeness theorem. A sneak peek to Gödel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic
Author: Christopher C. Leary
Publisher: Lulu.com
Total Pages: 382
Release: 2015
Genre: Computers
ISBN: 1942341075

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.