Machinability of Fibre-Reinforced Plastics

Machinability of Fibre-Reinforced Plastics
Author: J. Paulo Davim
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 209
Release: 2015-06-16
Genre: Technology & Engineering
ISBN: 3110388871

Presents polymer-based fibre reinforced composite materials and addresses the characteristics of these widely used materials like low density and coefficient of thermal expansion, specific strength with better fatigue resistance and modulus. The topics discussed are laser-based material machining, high-speed robotic end milling and LFRP modeling, including definitions, features, machine elements (system set-up) as well as experimental and theoretical investigations. These investigations include effects of input variables (tool rotation speed, feed rate and ultrasonic power) on cutting force, torque, cutting temperature, edge quality, surface roughness, burning of machined surface, tool wear, material removal rate, power consumption and feasible regions. Further a detailed literature review on drilling polymer composites with a focus on delamination is included. Aspects such as delamination mechanisms, fabrication methods, the type of drilling process adopted by various researchers, cutting parameters employed during drilling, mathematical delamination modelling, effect of thrust force, spindle speed, thermal loads, tool wear, surface roughness, tool geometry and tool materials on delamination and hole quality are summarized. In addition an approach of digital image processing in delamination assessment completes the approach. - Discusses Carbon Fiber Reinforced Plastics modern technologies for automated, highly productive and cost efficient processing. - Great value for final undergraduate engineering courses or as a topic on manufacturing with FRPs at the postgraduate level as well as a useful reference for academics, researchers, manufacturing, mechanical and materials engineers, professionals in machining of FRPs and related industries.

Machining and Machinability of Fiber Reinforced Polymer Composites

Machining and Machinability of Fiber Reinforced Polymer Composites
Author: Mohamed Thariq Hameed Sultan
Publisher: Springer Nature
Total Pages: 346
Release: 2020-12-22
Genre: Technology & Engineering
ISBN: 981334153X

This book covers current advances and practices in machining fibre-reinforced polymer composites under various conventional and nonconventional processes. It presents recent research and practices for effective and efficient machining of difficult-to-cut material, providing the technological ‘know-how’ on delamination-free of drilling, milling, trimming, and other cutting processes on fibre-reinforced polymer composites. It also guides the reader on the selection of optimum machining parameters, tool materials, as well as tool geometry. This book is of interest to academicians, students, researchers, practitioners, and industrialists working in aerospace, automotive, marine, and construction industries.

Sustainable Composites for Aerospace Applications

Sustainable Composites for Aerospace Applications
Author: Mohammad Jawaid
Publisher: Woodhead Publishing
Total Pages: 390
Release: 2018-04-27
Genre: Technology & Engineering
ISBN: 0081021380

Sustainable Composites for Aerospace Applications presents innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. It covers fundamental structural and chemical knowledge and explores various properties and characterization techniques, including microscopic, spectroscopic and mechanical behaviors. Users will find a strong focus on the potential applications of LDH polymer nanocomposites, such as in energy, electronics, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and future applications, and is an essential read for all academics, researchers, engineers and students working in this area. - Presents fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques - Provides an analytical overview of the different types of characterization techniques and technologies - Contains extensive reviews on cutting-edge research for future applications in a variety of industries

Machinability of Fibre-Reinforced Plastics

Machinability of Fibre-Reinforced Plastics
Author: J. Paulo Davim
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 210
Release: 2015-06-16
Genre: Technology & Engineering
ISBN: 3110292254

Presents polymer-based fibre reinforced composite materials and addresses the characteristics of these widely used materials like low density and coefficient of thermal expansion, specific strength with better fatigue resistance and modulus. The topics discussed are laser-based material machining, high-speed robotic end milling and LFRP modeling, including definitions, features, machine elements (system set-up) as well as experimental and theoretical investigations. These investigations include effects of input variables (tool rotation speed, feed rate and ultrasonic power) on cutting force, torque, cutting temperature, edge quality, surface roughness, burning of machined surface, tool wear, material removal rate, power consumption and feasible regions. Further a detailed literature review on drilling polymer composites with a focus on delamination is included. Aspects such as delamination mechanisms, fabrication methods, the type of drilling process adopted by various researchers, cutting parameters employed during drilling, mathematical delamination modelling, effect of thrust force, spindle speed, thermal loads, tool wear, surface roughness, tool geometry and tool materials on delamination and hole quality are summarized. In addition an approach of digital image processing in delamination assessment completes the approach. - Discusses Carbon Fiber Reinforced Plastics modern technologies for automated, highly productive and cost efficient processing. - Great value for final undergraduate engineering courses or as a topic on manufacturing with FRPs at the postgraduate level as well as a useful reference for academics, researchers, manufacturing, mechanical and materials engineers, professionals in machining of FRPs and related industries.

Glass Fibre-Reinforced Polymer Composites

Glass Fibre-Reinforced Polymer Composites
Author: Jalumedi Babu
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 125
Release: 2020-05-05
Genre: Science
ISBN: 3110608588

Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials.

Drilling of Composite Materials

Drilling of Composite Materials
Author: J. Paulo Davim
Publisher:
Total Pages: 0
Release: 2009
Genre: Composite materials
ISBN: 9781607411635

Nowadays, the use of composite materials has increased in various areas of science and technology due to their special properties, namely for these application in aircraft, automotive, defence and aerospace industries as well others advanced industries. Drilling is a frequently practised machining process in modern industry owing to the need for component assembly in composite structures. This book aims to provide the research and review studies in drilling of composite materials. The first three chapters provide information on delamination and damage reduction in drilling of composite materials. The following two chapters deal with influence of machining parameters on the delamination. The sixth chapter is focused on modelling of drilling aluminium matrix composites using artificial neural networks. The chapter seventh is dedicated study of analysis of delamination in drilling wood composite medium density fibreboards. Finally, the last chapter of this book is focused on studies on composite drilling - the state of the art. The present research book can be used as for final undergraduate engineering course (for example, mechanical, manufacturing, materials etc) or as a subject on machining/composites at the postgraduate level. Also, this research book can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing, materials and mechanical engineers, professional in composites technology and related industries.

Machining Technology for Composite Materials

Machining Technology for Composite Materials
Author: H Hocheng
Publisher: Elsevier
Total Pages: 488
Release: 2011-11-28
Genre: Technology & Engineering
ISBN: 0857095145

Machining processes play an important role in the manufacture of a wide variety of components. While the processes required for metal components are well-established, they cannot always be applied to composite materials, which instead require new and innovative techniques. Machining technology for composite materials provides an extensive overview and analysis of both traditional and non-traditional methods of machining for different composite materials.The traditional methods of turning, drilling and grinding are discussed in part one, which also contains chapters analysing cutting forces, tool wear and surface quality. Part two covers non-traditional methods for machining composite materials, including electrical discharge and laser machining, among others. Finally, part three contains chapters that deal with special topics in machining processes for composite materials, such as cryogenic machining and processes for wood-based composites.With its renowned editor and distinguished team of international contributors, Machining technology for composite materials is an essential reference particularly for process designers and tool and production engineers in the field of composite manufacturing, but also for all those involved in the fabrication and assembly of composite structures, including the aerospace, marine, civil and leisure industry sectors. - Provides an extensive overview of machining methods for composite materials - Chapters analyse cutting forces, tool wear and surface quality - Cryogenic machining and processes for wood based composites are discussed

Fiber-reinforced Polymers

Fiber-reinforced Polymers
Author: Catalin Iulian Pruncu
Publisher:
Total Pages: 466
Release: 2021
Genre: Technology & Engineering
ISBN: 9781536191219

"Fiber-reinforced polymers play an important role in the progress of materials science. Fiber-Reinforced Polymer: Processes and Applications presents the science of fiber-reinforced polymer composites from the manufacturing stage to applications. Apart from the fabrication of the composites, machinability properties are also discussed. This book considers both natural and synthetic fibers in polymer composites, as well as discusses their utility for different sectors such as automotive, aviation and biomedical engineering. In addition to the overview of fiber-reinforced polymers, engineering properties of these materials are discussed. This book also discusses the impact of environmental aspects such as moisture uptake on the properties of fiber-reinforced polymer composites. Since nano-engineering is a hot topic in the field of composites, the benefits of nano-fibers are discussed, as well as their fabrication methods, properties and applications. Moreover, fiber selections in polymer matrices are discussed by considering the interactions between fibers and matrices, as well as taking application fields into account"--

Manufacturing of Natural Fibre Reinforced Polymer Composites

Manufacturing of Natural Fibre Reinforced Polymer Composites
Author: Mohd Sapuan Salit
Publisher: Springer
Total Pages: 393
Release: 2015-09-10
Genre: Nature
ISBN: 3319079441

Natural fibre composite is an emerging material that has great potential to be used in engineering application. Oil palm, sugar palm, bagasse, coir, banana stem, hemp, jute, sisal, kenaf, roselle, rice husk, betul nut husk and cocoa pod are among the natural fibres reported to be used as reinforcing materials in polymer composites. Natural fibre composites were used in many industries such as automotive, building, furniture, marine and aerospace industries. The advantages of natural fibre composites include low cost, renewable, abundance, light weight, less abrasive and they are suitable to be used in semi or non-structural engineering components. Research on various aspects of natural fibre composites such as characterization, determination of properties and design have been extensively carried out. However, publications that reported on research of manufacture of natural fibre composites are very limited. Specifically, although manufacturing methods of components from natural fibre composites are similar to those of components from conventional fibre composites such as glass, carbon and Kevlar fibres, modification of equipment used for conventional fibre composites may be required. This book fills the gap of knowledge in the field of natural fibre composites for the research community. Among the methods reported that are being used to produce components from natural fibre composites include hand lay-up, compression moulding, filament winding, injection moulding, resin transfer moulding, pultrusion and vacuum bag moulding. This book is also intended to address some research on secondary processing such as machining and laser welding of natural fibre composites. It is hoped that publication of this book will provide the readers new knowledge and understanding on the manufacture of natural fibre composites.