Machine Learning Applications In Software Engineering

Machine Learning Applications In Software Engineering
Author: Du Zhang
Publisher: World Scientific
Total Pages: 367
Release: 2005-02-21
Genre: Computers
ISBN: 9814481424

Machine learning deals with the issue of how to build computer programs that improve their performance at some tasks through experience. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fertile ground where many software development and maintenance tasks could be formulated as learning problems and approached in terms of learning algorithms. This book deals with the subject of machine learning applications in software engineering. It provides an overview of machine learning, summarizes the state-of-the-practice in this niche area, gives a classification of the existing work, and offers some application guidelines. Also included in the book is a collection of previously published papers in this research area.

Advances in Machine Learning Applications in Software Engineering

Advances in Machine Learning Applications in Software Engineering
Author: Zhang, Du
Publisher: IGI Global
Total Pages: 498
Release: 2006-10-31
Genre: Computers
ISBN: 1591409438

"This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field"--Provided by publisher.

Machine Learning Engineering in Action

Machine Learning Engineering in Action
Author: Ben Wilson
Publisher: Simon and Schuster
Total Pages: 879
Release: 2022-05-17
Genre: Computers
ISBN: 1638356580

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.

Artificial Intelligence Methods For Software Engineering

Artificial Intelligence Methods For Software Engineering
Author: Meir Kalech
Publisher: World Scientific
Total Pages: 457
Release: 2021-06-15
Genre: Computers
ISBN: 9811239932

Software is an integral part of our lives today. Modern software systems are highly complex and often pose new challenges in different aspects of Software Engineering (SE).Artificial Intelligence (AI) is a growing field in computer science that has been proven effective in applying and developing AI techniques to address various SE challenges.This unique compendium covers applications of state-of-the-art AI techniques to the key areas of SE (design, development, debugging, testing, etc).All the materials presented are up-to-date. This reference text will benefit researchers, academics, professionals, and postgraduate students in AI, machine learning and software engineering.Related Link(s)

Building Machine Learning Powered Applications

Building Machine Learning Powered Applications
Author: Emmanuel Ameisen
Publisher: "O'Reilly Media, Inc."
Total Pages: 243
Release: 2020-01-21
Genre: Computers
ISBN: 1492045063

Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step. Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies. This book will help you: Define your product goal and set up a machine learning problem Build your first end-to-end pipeline quickly and acquire an initial dataset Train and evaluate your ML models and address performance bottlenecks Deploy and monitor your models in a production environment

Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision
Author: Kashyap, Ramgopal
Publisher: IGI Global
Total Pages: 318
Release: 2019-10-04
Genre: Computers
ISBN: 1799801845

Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.

Artificial Intelligence and Software Engineering

Artificial Intelligence and Software Engineering
Author: Derek Partridge
Publisher: Routledge
Total Pages: 287
Release: 2013-04-11
Genre: Business & Economics
ISBN: 1136594469

Managers, business owners, computer literate individuals, software developers, students, and researchers--all are looking for an understanding of artificial intelligence (AI) and what might be in the future. In this literate yet easy-to-read discussion, Derek Partridge explains what artificial intelligence can and cannot do, and what it holds for applications such as banking, financial services, and expert systems of all kinds. Topics include: the strengths and weaknesses of software development and engineering; machine learning and its promises and problems; expert systems and success stories; and practical software through artificial intelligence.

Automated Software Engineering: A Deep Learning-Based Approach

Automated Software Engineering: A Deep Learning-Based Approach
Author: Suresh Chandra Satapathy
Publisher: Springer Nature
Total Pages: 125
Release: 2020-01-07
Genre: Technology & Engineering
ISBN: 3030380068

This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid changes in software development, they often prove to be outdated or incapable of handling the software’s complexity. Hence, many previously used methods are proving insufficient to solve the problems now arising in software development. The book highlights a number of unique problems and effective solutions that reflect the state-of-the-art in software engineering. Deep learning is the latest computing technique, and is now gaining popularity in various fields of software engineering. This book explores new trends and experiments that have yielded promising solutions to current challenges in software engineering. As such, it offers a valuable reference guide for a broad audience including systems analysts, software engineers, researchers, graduate students and professors engaged in teaching software engineering.