Machine Learning with Business Rules on IBM Z: Acting on Your Insights

Machine Learning with Business Rules on IBM Z: Acting on Your Insights
Author: Mike Johnson
Publisher: IBM Redbooks
Total Pages: 44
Release: 2019-12-11
Genre: Computers
ISBN: 0738456926

This Redpaper introduces the integration between two IBM products that you might like to consider when implementing a modern agile solution on your Z systems. The document briefly introduces Operational Decision Manager on z/OS and Machine learning on z/OS. In the case of Machine Learning we focus on the aspect of real-time scoring models and how these can be used with Business Rules to give better decisions. Note: Important changes since this document was written: This document was written for an older release of Operational Decision Manager for z/OS (ODM for z/OS). ODM for z/OS 8.9.1 required the writing of custom Java code to access a Watson Machine Learning for z/OS Scoring Service (this can be seen in ). Since that time ODM for z/OS version 8.10.1 has been released and much improves the integration experience. Integrating the two products no longer requires custom Java code. Using ODM for z/OS 8.10.1 or later you can use an automated wizard in the ODM tooling to: Browse and select a model from Watson Machine Learning Import the Machine Learning data model into your rule project Automatically generate a template rule that integrates a call to the Watson Machine Learning scoring service Download and read this document for: Individual introductions to ODM for z/OS and Machine learning Discussions on the benefits of using the two technologies together Information on integrating if you have not yet updated to ODM for z/OS 8.10.1 For information about the machine learning integration in ODM for z/OS 8.10.1 see IBM Watson Machine Learning for z/OS integration topic in the ODM for z/OS 8.10.x Knowledge Center

Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics

Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager Advanced and Predictive Analytics
Author: Whei-Jen Chen
Publisher: IBM Redbooks
Total Pages: 266
Release: 2015-12-03
Genre: Computers
ISBN: 073844118X

Systems of record (SORs) are engines that generates value for your business. Systems of engagement (SOE) are always evolving and generating new customer-centric experiences and new opportunities to capitalize on the value in the systems of record. The highest value is gained when systems of record and systems of engagement are brought together to deliver insight. Systems of insight (SOI) monitor and analyze what is going on with various behaviors in the systems of engagement and information being stored or transacted in the systems of record. SOIs seek new opportunities, risks, and operational behavior that needs to be reported or have action taken to optimize business outcomes. Systems of insight are at the core of the Digital Experience, which tries to derive insights from the enormous amount of data generated by automated processes and customer interactions. Systems of Insight can also provide the ability to apply analytics and rules to real-time data as it flows within, throughout, and beyond the enterprise (applications, databases, mobile, social, Internet of Things) to gain the wanted insight. Deriving this insight is a key step toward being able to make the best decisions and take the most appropriate actions. Examples of such actions are to improve the number of satisfied clients, identify clients at risk of leaving and incentivize them to stay loyal, identify patterns of risk or fraudulent behavior and take action to minimize it as early as possible, and detect patterns of behavior in operational systems and transportation that lead to failures, delays, and maintenance and take early action to minimize risks and costs. IBM® Operational Decision Manager is a decision management platform that provides capabilities that support both event-driven insight patterns, and business-rule-driven scenarios. It also can easily be used in combination with other IBM Analytics solutions, as the detailed examples will show. IBM Operational Decision Manager Advanced, along with complementary IBM software offerings that also provide capability for systems of insight, provides a way to deliver the greatest value to your customers and your business. IBM Operational Decision Manager Advanced brings together data from different sources to recognize meaningful trends and patterns. It empowers business users to define, manage, and automate repeatable operational decisions. As a result, organizations can create and shape customer-centric business moments. This IBM Redbooks® publication explains the key concepts of systems of insight and how to implement a system of insight solution with examples. It is intended for IT architects and professionals who are responsible for implementing a systems of insights solution requiring event-based context pattern detection and deterministic decision services to enhance other analytics solution components with IBM Operational Decision Manager Advanced.

Enabling Real-time Analytics on IBM z Systems Platform

Enabling Real-time Analytics on IBM z Systems Platform
Author: Lydia Parziale
Publisher: IBM Redbooks
Total Pages: 218
Release: 2016-08-08
Genre: Computers
ISBN: 0738441864

Regarding online transaction processing (OLTP) workloads, IBM® z SystemsTM platform, with IBM DB2®, data sharing, Workload Manager (WLM), geoplex, and other high-end features, is the widely acknowledged leader. Most customers now integrate business analytics with OLTP by running, for example, scoring functions from transactional context for real-time analytics or by applying machine-learning algorithms on enterprise data that is kept on the mainframe. As a result, IBM adds investment so clients can keep the complete lifecycle for data analysis, modeling, and scoring on z Systems control in a cost-efficient way, keeping the qualities of services in availability, security, reliability that z Systems solutions offer. Because of the changed architecture and tighter integration, IBM has shown, in a customer proof-of-concept, that a particular client was able to achieve an orders-of-magnitude improvement in performance, allowing that client's data scientist to investigate the data in a more interactive process. Open technologies, such as Predictive Model Markup Language (PMML) can help customers update single components instead of being forced to replace everything at once. As a result, you have the possibility to combine your preferred tool for model generation (such as SAS Enterprise Miner or IBM SPSS® Modeler) with a different technology for model scoring (such as Zementis, a company focused on PMML scoring). IBM SPSS Modeler is a leading data mining workbench that can apply various algorithms in data preparation, cleansing, statistics, visualization, machine learning, and predictive analytics. It has over 20 years of experience and continued development, and is integrated with z Systems. With IBM DB2 Analytics Accelerator 5.1 and SPSS Modeler 17.1, the possibility exists to do the complete predictive model creation including data transformation within DB2 Analytics Accelerator. So, instead of moving the data to a distributed environment, algorithms can be pushed to the data, using cost-efficient DB2 Accelerator for the required resource-intensive operations. This IBM Redbooks® publication explains the overall z Systems architecture, how the components can be installed and customized, how the new IBM DB2 Analytics Accelerator loader can help efficient data loading for z Systems data and external data, how in-database transformation, in-database modeling, and in-transactional real-time scoring can be used, and what other related technologies are available. This book is intended for technical specialists and architects, and data scientists who want to use the technology on the z Systems platform. Most of the technologies described in this book require IBM DB2 for z/OS®. For acceleration of the data investigation, data transformation, and data modeling process, DB2 Analytics Accelerator is required. Most value can be achieved if most of the data already resides on z Systems platforms, although adding external data (like from social sources) poses no problem at all.

Getting Started: Journey to Modernization with IBM Z

Getting Started: Journey to Modernization with IBM Z
Author: Makenzie Manna
Publisher: IBM Redbooks
Total Pages: 90
Release: 2021-03-15
Genre: Computers
ISBN: 0738459534

Modernization of enterprise IT applications and infrastructure is key to the survival of organizations. It is no longer a matter of choice. The cost of missing out on business opportunities in an intensely competitive market can be enormous. To aid in their success, organizations are facing increased encouragement to embrace change. They are pushed to think of new and innovative ways to counter, or offer, a response to threats that are posed by competitors who are equally as aggressive in adopting newer methods and technologies. The term modernization often varies in meaning based on perspective. This IBM® Redbooks® publication focuses on the technological advancements that unlock computing environments that are hosted on IBM Z® to enable secure processing at the core of hybrid. This publication is intended for IT executives, IT managers, IT architects, System Programmers, and Application Developer professionals.

Apache Spark Implementation on IBM z/OS

Apache Spark Implementation on IBM z/OS
Author: Lydia Parziale
Publisher: IBM Redbooks
Total Pages: 144
Release: 2016-08-13
Genre: Computers
ISBN: 0738414964

The term big data refers to extremely large sets of data that are analyzed to reveal insights, such as patterns, trends, and associations. The algorithms that analyze this data to provide these insights must extract value from a wide range of data sources, including business data and live, streaming, social media data. However, the real value of these insights comes from their timeliness. Rapid delivery of insights enables anyone (not only data scientists) to make effective decisions, applying deep intelligence to every enterprise application. Apache Spark is an integrated analytics framework and runtime to accelerate and simplify algorithm development, depoyment, and realization of business insight from analytics. Apache Spark on IBM® z/OS® puts the open source engine, augmented with unique differentiated features, built specifically for data science, where big data resides. This IBM Redbooks® publication describes the installation and configuration of IBM z/OS Platform for Apache Spark for field teams and clients. Additionally, it includes examples of business analytics scenarios.

IBM z/OS Mainframe Security and Audit Management Using the IBM Security zSecure Suite

IBM z/OS Mainframe Security and Audit Management Using the IBM Security zSecure Suite
Author: Axel Buecker
Publisher: IBM Redbooks
Total Pages: 494
Release: 2011-08-18
Genre: Computers
ISBN: 0738435880

Every organization has a core set of mission-critical data that must be protected. Security lapses and failures are not simply disruptions—they can be catastrophic events, and the consequences can be felt across the entire organization. As a result, security administrators face serious challenges in protecting the company's sensitive data. IT staff are challenged to provide detailed audit and controls documentation at a time when they are already facing increasing demands on their time, due to events such as mergers, reorganizations, and other changes. Many organizations do not have enough experienced mainframe security administrators to meet these objectives, and expanding employee skillsets with low-level mainframe security technologies can be time-consuming. The IBM® Security zSecure suite consists of multiple components designed to help you administer your mainframe security server, monitor for threats, audit usage and configurations, and enforce policy compliance. Administration, provisioning, and management components can significantly reduce administration, contributing to improved productivity, faster response time, and reduced training time needed for new administrators. This IBM Redbooks® publication is a valuable resource for security officers, administrators, and architects who wish to better understand their mainframe security solutions.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
Total Pages: 385
Release: 2020-06-21
Genre: Computers
ISBN: 0128184396

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Modernize Your IBM DB2 for IBM z/OS Maintenance with Utility Autonomics

Modernize Your IBM DB2 for IBM z/OS Maintenance with Utility Autonomics
Author: Dean Brown
Publisher: IBM Redbooks
Total Pages: 152
Release: 2015-08-20
Genre: Computers
ISBN: 0738440892

IBM® DB2® for IBM z/OS® helps lower the cost of managing data by automating administration, increasing storage efficiency, improving performance, and simplifying the deployment of virtual appliances. By automating tasks such as memory allocation, storage management, and business policy maintenance, DB2 is able to perform many management tasks itself, freeing up Database Administrators to focus on new projects. This IBM Redbooks® publication introduces autonomics for DB2 for z/OS. IBM provides several different components that, when combined, can create an autonomic database environment. All these respective components cover certain aspects of autonomics, which can collaborate into one coherent solution. In our evolution of autonomics and the need to move to smarter systems there has been a bigger drive to the concept of "Active" versus "Passive" autonomics. With the inclusion of the IBM Management Console for IMSTM and DB2 for z/OS and the Autonomics Director, it is now easier than ever to make that transition by leveraging the strength of the DB2 Utilities Solution Pack for z/OS all in one standardized and centralized interface. This publication guides you through the business reasons for adopting autonomic solutions, and provides step-by-step guidance to implement these capabilities in your DB2 for z/OS configuration. This publication is of interest primarily to DB2 Database Administrators and DB2 Systems Programmers, and for anyone looking to understand the benefits of DB2 autonomic solutions.

IBM z15 (8561) Technical Guide

IBM z15 (8561) Technical Guide
Author: Octavian Lascu
Publisher: IBM Redbooks
Total Pages: 554
Release: 2022-07-13
Genre: Computers
ISBN: 0738458120

This IBM® Redbooks® publication describes the features and functions the latest member of the IBM Z® platform, the IBM z15TM (machine type 8561). It includes information about the IBM z15 processor design, I/O innovations, security features, and supported operating systems. The z15 is a state-of-the-art data and transaction system that delivers advanced capabilities, which are vital to any digital transformation. The z15 is designed for enhanced modularity, which is in an industry standard footprint. This system excels at the following tasks: Making use of multicloud integration services Securing data with pervasive encryption Accelerating digital transformation with agile service delivery Transforming a transactional platform into a data powerhouse Getting more out of the platform with IT Operational Analytics Accelerating digital transformation with agile service delivery Revolutionizing business processes Blending open source and Z technologies This book explains how this system uses new innovations and traditional Z strengths to satisfy growing demand for cloud, analytics, and open source technologies. With the z15 as the base, applications can run in a trusted, reliable, and secure environment that improves operations and lessens business risk.