Machining of Polymer Composites

Machining of Polymer Composites
Author: Jamal Ahmad
Publisher: Springer Science & Business Media
Total Pages: 321
Release: 2009-04-21
Genre: Technology & Engineering
ISBN: 0387686193

This excellent volume will serve as an indispensable reference and source book for process design, tool and production engineers in composite manufacturing. It provides the reader with a comprehensive treatment of the theory of machining as it applies to fiber reinforced polymer composites. It covers the latest technical advances in the area of machining and tooling, and discusses the applications of fiber reinforced polymer composites in the aircraft and automotive industries.

Machining and Machinability of Fiber Reinforced Polymer Composites

Machining and Machinability of Fiber Reinforced Polymer Composites
Author: Mohamed Thariq Hameed Sultan
Publisher: Springer Nature
Total Pages: 346
Release: 2020-12-22
Genre: Technology & Engineering
ISBN: 981334153X

This book covers current advances and practices in machining fibre-reinforced polymer composites under various conventional and nonconventional processes. It presents recent research and practices for effective and efficient machining of difficult-to-cut material, providing the technological ‘know-how’ on delamination-free of drilling, milling, trimming, and other cutting processes on fibre-reinforced polymer composites. It also guides the reader on the selection of optimum machining parameters, tool materials, as well as tool geometry. This book is of interest to academicians, students, researchers, practitioners, and industrialists working in aerospace, automotive, marine, and construction industries.

Machining Technology for Composite Materials

Machining Technology for Composite Materials
Author: H Hocheng
Publisher: Elsevier
Total Pages: 488
Release: 2011-11-28
Genre: Technology & Engineering
ISBN: 0857095145

Machining processes play an important role in the manufacture of a wide variety of components. While the processes required for metal components are well-established, they cannot always be applied to composite materials, which instead require new and innovative techniques. Machining technology for composite materials provides an extensive overview and analysis of both traditional and non-traditional methods of machining for different composite materials.The traditional methods of turning, drilling and grinding are discussed in part one, which also contains chapters analysing cutting forces, tool wear and surface quality. Part two covers non-traditional methods for machining composite materials, including electrical discharge and laser machining, among others. Finally, part three contains chapters that deal with special topics in machining processes for composite materials, such as cryogenic machining and processes for wood-based composites.With its renowned editor and distinguished team of international contributors, Machining technology for composite materials is an essential reference particularly for process designers and tool and production engineers in the field of composite manufacturing, but also for all those involved in the fabrication and assembly of composite structures, including the aerospace, marine, civil and leisure industry sectors. - Provides an extensive overview of machining methods for composite materials - Chapters analyse cutting forces, tool wear and surface quality - Cryogenic machining and processes for wood based composites are discussed

Machining of Ceramics and Composites

Machining of Ceramics and Composites
Author: Jahanmir
Publisher: CRC Press
Total Pages: 728
Release: 1999-01-04
Genre: Technology & Engineering
ISBN: 9780824701789

Presenting modern advances in the machining of ceramics and composites, this work offers broadly based, fundamental information for selecting the appropriate machining processes and parameters, developing successful manufacturing strategies, and designing novel machining systems. It focuses on scientific and engineering developments affecting the present and future of machining processes.

Machining of Metal Matrix Composites

Machining of Metal Matrix Composites
Author: J. Paulo Davim
Publisher: Springer Science & Business Media
Total Pages: 170
Release: 2011-09-18
Genre: Technology & Engineering
ISBN: 0857299387

Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals involved with MMC applications. It can also be used to teach modern manufacturing engineering or as a textbook for advanced undergraduate and postgraduate engineering courses in machining, manufacturing or materials.

Manufacturing of Polymer Composites

Manufacturing of Polymer Composites
Author: B. Tomas Astrom
Publisher: Routledge
Total Pages: 500
Release: 2018-04-27
Genre: Science
ISBN: 1351433784

The potential application areas for polymer composites are vast. While techniques and methodologies for composites design are relatively well established, the knowledge and understanding of post-design issues lag far behind. This leads to designs and eventually composites with disappointing properties and unnecessarily high cost, thus impeding a wider industrial acceptance of polymer composites. Manufacturing of Polymer Composites completely covers pre- and post-design issues. While the book enables students to become fully comfortable with composites as a possible materials choice, it also provides sufficient knowledge about manufacturing-related issues to permit them to avoid common pitfalls and unmanufacturable designs. The book is a fully comprehensive text covering all commercially significant materials and manufacturing techniques while at the same time discussing areas of research and development that are nearing commercial reality.

Manufacturing of Natural Fibre Reinforced Polymer Composites

Manufacturing of Natural Fibre Reinforced Polymer Composites
Author: Mohd Sapuan Salit
Publisher: Springer
Total Pages: 393
Release: 2015-09-10
Genre: Nature
ISBN: 3319079441

Natural fibre composite is an emerging material that has great potential to be used in engineering application. Oil palm, sugar palm, bagasse, coir, banana stem, hemp, jute, sisal, kenaf, roselle, rice husk, betul nut husk and cocoa pod are among the natural fibres reported to be used as reinforcing materials in polymer composites. Natural fibre composites were used in many industries such as automotive, building, furniture, marine and aerospace industries. The advantages of natural fibre composites include low cost, renewable, abundance, light weight, less abrasive and they are suitable to be used in semi or non-structural engineering components. Research on various aspects of natural fibre composites such as characterization, determination of properties and design have been extensively carried out. However, publications that reported on research of manufacture of natural fibre composites are very limited. Specifically, although manufacturing methods of components from natural fibre composites are similar to those of components from conventional fibre composites such as glass, carbon and Kevlar fibres, modification of equipment used for conventional fibre composites may be required. This book fills the gap of knowledge in the field of natural fibre composites for the research community. Among the methods reported that are being used to produce components from natural fibre composites include hand lay-up, compression moulding, filament winding, injection moulding, resin transfer moulding, pultrusion and vacuum bag moulding. This book is also intended to address some research on secondary processing such as machining and laser welding of natural fibre composites. It is hoped that publication of this book will provide the readers new knowledge and understanding on the manufacture of natural fibre composites.

Machinability of Fibre-Reinforced Plastics

Machinability of Fibre-Reinforced Plastics
Author: J. Paulo Davim
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 209
Release: 2015-06-16
Genre: Technology & Engineering
ISBN: 3110388871

Presents polymer-based fibre reinforced composite materials and addresses the characteristics of these widely used materials like low density and coefficient of thermal expansion, specific strength with better fatigue resistance and modulus. The topics discussed are laser-based material machining, high-speed robotic end milling and LFRP modeling, including definitions, features, machine elements (system set-up) as well as experimental and theoretical investigations. These investigations include effects of input variables (tool rotation speed, feed rate and ultrasonic power) on cutting force, torque, cutting temperature, edge quality, surface roughness, burning of machined surface, tool wear, material removal rate, power consumption and feasible regions. Further a detailed literature review on drilling polymer composites with a focus on delamination is included. Aspects such as delamination mechanisms, fabrication methods, the type of drilling process adopted by various researchers, cutting parameters employed during drilling, mathematical delamination modelling, effect of thrust force, spindle speed, thermal loads, tool wear, surface roughness, tool geometry and tool materials on delamination and hole quality are summarized. In addition an approach of digital image processing in delamination assessment completes the approach. - Discusses Carbon Fiber Reinforced Plastics modern technologies for automated, highly productive and cost efficient processing. - Great value for final undergraduate engineering courses or as a topic on manufacturing with FRPs at the postgraduate level as well as a useful reference for academics, researchers, manufacturing, mechanical and materials engineers, professionals in machining of FRPs and related industries.

Advances in Machining of Composite Materials

Advances in Machining of Composite Materials
Author: Islam Shyha
Publisher: Springer Nature
Total Pages: 547
Release: 2021-06-21
Genre: Technology & Engineering
ISBN: 3030714381

This book covers a wide range of conventional and non-conventional machining processes of various composite materials, including polymer and metallic-based composites, nanostructured composites and green/natural composites. It presents state-of-the-art academic work and industrial developments in material fabrication, machining, modelling and applications, together with current practices and requirements for producing high-quality composite components. There are also dedicated chapters on physical properties and fabrication techniques of different composite material groups. The book also has chapters on health and safety considerations when machining composite materials and recycling composite materials. The contributors present machining composite materials in terms of operating conditions; cutting tools; appropriate machines; and typical damage patterns following machining operations. This book serves as a useful reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, and machine tool designers. It can also benefit final-year undergraduate and postgraduate students, as it provides comprehensive information on the machining of composite materials to produce high-quality final components. The book chapters were authored by experienced academics and researchers from four continents and nine countries including Canada, China, Egypt, India, Malaysia, Portugal, Singapore, United Kingdom and the USA.