Fundamentals of Ocean Renewable Energy

Fundamentals of Ocean Renewable Energy
Author: Simon P. Neill
Publisher: Academic Press
Total Pages: 338
Release: 2018-06-20
Genre: Technology & Engineering
ISBN: 012810449X

Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials. - Presents the fundamental physics and theory behind ocean energy systems, covering both oceanographic and engineering aspects of ocean energy - Explores the most widely adopted conversion technologies, including tidal, wave, offshore wind, ocean thermal and currents

Marine Renewable Energy Technology and Environmental Interactions

Marine Renewable Energy Technology and Environmental Interactions
Author: Mark A. Shields
Publisher: Springer Science & Business Media
Total Pages: 182
Release: 2014-02-12
Genre: Science
ISBN: 9401780021

It is now widely recognized that there is a need for long-term secure and suitable sustainable forms of energy. Renewable energy from the marine environment, in particular renewable energy from tidal currents, wave and wind, can help achieve a sustainable energy future. Our understanding of environmental impacts and suitable mitigation methods associated with extracting renewable energy from the marine environment is improving all the time and it is essential that we be able to distinguish between natural and anthropocentric drivers and impacts. An overview of current understanding of the environmental implications of marine renewable energy technology is provided.

Electricity from Wave and Tide

Electricity from Wave and Tide
Author: Paul A. Lynn
Publisher: John Wiley & Sons
Total Pages: 280
Release: 2013-10-28
Genre: Technology & Engineering
ISBN: 1118340914

A concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today’s most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources – drawing energy from the World’s waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appeal to students of renewable energy, and the growing number of people who wish to understand how marine devices can contribute to carbon-free electricity generation in the 21st century.

Renewable Energy from the Oceans

Renewable Energy from the Oceans
Author: Domenico P. Coiro
Publisher: Institution of Engineering and Technology
Total Pages: 480
Release: 2019-08-12
Genre: Technology & Engineering
ISBN: 1785617664

There are many ways to harness the renewable and emissions-free energy available from the Earth's oceans. The technologies include wave energy, tidal and current energy, and energy from thermal and salinity gradients. In addition, offshore wind energy and marine (floating) solar arrays offer a possibility to exploit vast resources that are far larger than those available onshore. The potential capacities range from many hundreds of gigawatts to terawatts of generation. These technologies could contribute a significant part of the global electricity demand; they are particularly suitable for providing sustainable power to marine regions and island communities and nations.

Offshore Energy Structures

Offshore Energy Structures
Author: Madjid Karimirad
Publisher: Springer
Total Pages: 307
Release: 2014-12-05
Genre: Technology & Engineering
ISBN: 3319121758

This book provides all the key information needed to design offshore structures for renewable energy applications successfully. Suitable for practicing engineers and students, the author conveys design principles and best practices in a clear, concise manner, focusing on underlying physics while eschewing complicated mathematical detail. The text connects underlying scientific theory with industry standards and practical implementation issues for offshore wind turbines, wave energy converters and current turbines. Combined concepts such as wave-wind energy platforms are discussed, as well. Coverage of design codes and numerical tools ensures the usefulness of this resource for all those studying and working in the rapidly expanding field of offshore renewable energy.

Marine Renewable Energies

Marine Renewable Energies
Author: Institut français de recherche pour l'exploitation de la mer
Publisher: Editions Quae
Total Pages: 322
Release: 2009
Genre: Marine resources
ISBN: 275920183X

Optimal Planning of Smart Grid With Renewable Energy Resources

Optimal Planning of Smart Grid With Renewable Energy Resources
Author: Jain, Naveen
Publisher: IGI Global
Total Pages: 294
Release: 2021-12-10
Genre: Technology & Engineering
ISBN: 1668440148

Understanding the recent developments in renewable energy is crucial for a range of fields in today’s society. As environmental awareness and the need for a more sustainable future continues to grow, the uses of renewable energy, particularly in areas such as smart grid, must be considered and studied thoroughly to be implemented successfully and move society toward a more sustainable future. Optimal Planning of Smart Grid With Renewable Energy Resources offers a detailed guide to the new problems and opportunities for sustainable growth in engineering by focusing on modeling diverse problems occurring in science and engineering as well as novel effective theoretical methods and robust optimization theories, which can be used to analyze and solve multiple types of problems. Covering topics such as electric drives and energy systems, this publication is ideal for researchers, academicians, industry professionals, engineers, scholars, instructors, and students.

Renewable Energy From the Ocean

Renewable Energy From the Ocean
Author: William H. Avery
Publisher: Oxford University Press
Total Pages: 477
Release: 1994-03-17
Genre: Science
ISBN: 0195361113

Scientists and engineers around the world are striving to develop new sources of energy. One source, ocean thermal energy conversion, has virtually unlimited potential. It is based on techniques that exploit heat produced by solar energy that may, in turn, be used to produce fuel and electricity. This book reviews the status and background of this promising technology. William H. Avery is the leading expert in this field, and his co-author Chih Wu is an authority on heat engine performance. Together they describe the workings of an OTEC power plant and how such a system might be implemented as part of a futuristic national energy strategy. The book is the only detailed presentation of basic OTEC technology, its testing and improvement. It is based on extensive development initiatives undertaken internationally during the period from 1974 through 1985. The book offers a thorough assessment of the economics of OTEC in comparison with other energy production methods. It will be of interest to a wide range of professionals in energy research, power and mechanical engineering, and to upper-level undergraduate students taking courses in these fields.

Offshore Energy and Marine Spatial Planning

Offshore Energy and Marine Spatial Planning
Author: Katherine L. Yates
Publisher: Routledge
Total Pages: 300
Release: 2018-03-29
Genre: Nature
ISBN: 131735642X

The generation of offshore energy is a rapidly growing sector, competing for space in an already busy seascape. This book brings together the ecological, economic, and social implications of the spatial conflict this growth entails. Covering all energy-generation types (wind, wave, tidal, oil, and gas), it explores the direct and indirect impacts the growth of offshore energy generation has on both the marine environment and the existing uses of marine space. Chapters explore main issues associated with offshore energy, such as the displacement of existing activities and the negative impacts it can have on marine species and ecosystems. Chapters also discuss how the growth of offshore energy generation presents new opportunities for collaboration and co-location with other sectors, for example, the co-location of wild-capture fisheries and wind farms. The book integrates these issues and opportunities, and demonstrates the importance of holistic marine spatial planning for optimising the location of offshore energy-generation sites. It highlights the importance of stakeholder engagement in these planning processes and the role of integrated governance, with illustrative case studies from the United States, United Kingdom, northern Europe, and the Mediterranean. It also discusses trade-off analysis and decision theory and provides a range of tools and best practices to inform future planning processes.