Mathematical Biology II

Mathematical Biology II
Author: James D. Murray
Publisher: Springer Science & Business Media
Total Pages: 834
Release: 2011-02-15
Genre: Mathematics
ISBN: 0387952284

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Mathematical Biology

Mathematical Biology
Author: James D. Murray
Publisher: Springer Science & Business Media
Total Pages: 551
Release: 2007-06-12
Genre: Mathematics
ISBN: 0387224378

Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.

Mathematical Biology

Mathematical Biology
Author: James D. Murray
Publisher: Springer Science & Business Media
Total Pages: 783
Release: 2013-06-29
Genre: Mathematics
ISBN: 3662085429

Mathematics has always benefited from its involvement with developing sciences. Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time. Mathematical biology is a fast growing, well recognised, albeit not clearly defined, subject and is, to my mind, the most exciting modern application of mathematics. The increasing use of mathematics in biology is inevitable as biol ogy becomes more quantitative. The complexity of the biological sciences makes interdisciplinary involvement essential. For the mathematician, biology opens up new and exciting branches while for the biologist mathematical modelling offers another research tool commmensurate with a new powerful laboratory technique but only if used appropriately and its limitations recognised. However, the use of esoteric mathematics arrogantly applied to biological problems by mathemati cians who know little about the real biology, together with unsubstantiated claims as to how important such theories are, does little to promote the interdisciplinary involvement which is so essential. Mathematical biology research, to be useful and interesting, must be relevant biologically.

Essential Mathematical Biology

Essential Mathematical Biology
Author: Nicholas F. Britton
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2012-12-06
Genre: Mathematics
ISBN: 1447100492

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

A Course in Mathematical Biology

A Course in Mathematical Biology
Author: Gerda de Vries
Publisher: SIAM
Total Pages: 307
Release: 2006-07-01
Genre: Mathematics
ISBN: 0898718252

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.

Mathematical Models in Biology

Mathematical Models in Biology
Author: Leah Edelstein-Keshet
Publisher: SIAM
Total Pages: 629
Release: 1988-01-01
Genre: Mathematics
ISBN: 9780898719147

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

Differential Equations and Mathematical Biology

Differential Equations and Mathematical Biology
Author: D.S. Jones
Publisher: CRC Press
Total Pages: 462
Release: 2009-11-09
Genre: Mathematics
ISBN: 1420083589

Deepen students' understanding of biological phenomenaSuitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeli

Introduction to Mathematical Biology

Introduction to Mathematical Biology
Author: S. I. Rubinow
Publisher: Dover Books on Biology
Total Pages: 0
Release: 2002
Genre: Mathematics
ISBN: 9780486425320

Developed from the author's course in mathematical biology at Cornell University, this volume is designed to cultivate in graduate biology students an awareness of and familiarity with applications of mathematical techniques and methods related to biology.This text explores five areas of mathematical biology, which are unified by their underlying mathematical structure. The first three subjects (cell growth, enzymatic reactions, and physiological tracers) are biological; the final two (biological fluid dynamics and diffusion) are biophysical. Introduced in an order of progressive mathematical complexity, the topics essentially follow a course in elementary differential equations, although linear algebra and graph theory are also touched upon.Free of mathematical jargon, the text requires only a knowledge of elementary calculus. A set of problems appears at the end of each chapter, with solutions at the end of the book. In addition to its value to biology students, this text will also prove useful to students with backgrounds in mathematics, physics, and engineering, who possess little knowledge of biology but nevertheless take an interest in the quantitative approach.

Topics in Mathematical Biology

Topics in Mathematical Biology
Author: Karl Peter Hadeler
Publisher: Springer
Total Pages: 362
Release: 2017-12-20
Genre: Mathematics
ISBN: 331965621X

This book analyzes the impact of quiescent phases on biological models. Quiescence arises, for example, when moving individuals stop moving, hunting predators take a rest, infected individuals are isolated, or cells enter the quiescent compartment of the cell cycle. In the first chapter of Topics in Mathematical Biology general principles about coupled and quiescent systems are derived, including results on shrinking periodic orbits and stabilization of oscillations via quiescence. In subsequent chapters classical biological models are presented in detail and challenged by the introduction of quiescence. These models include delay equations, demographic models, age structured models, Lotka-Volterra systems, replicator systems, genetic models, game theory, Nash equilibria, evolutionary stable strategies, ecological models, epidemiological models, random walks and reaction-diffusion models. In each case we find new and interesting results such as stability of fixed points and/or periodic orbits, excitability of steady states, epidemic outbreaks, survival of the fittest, and speeds of invading fronts. The textbook is intended for graduate students and researchers in mathematical biology who have a solid background in linear algebra, differential equations and dynamical systems. Readers can find gems of unexpected beauty within these pages, and those who knew K.P. (as he was often called) well will likely feel his presence and hear him speaking to them as they read.