Mathematical Methods in Chemical and Biological Engineering

Mathematical Methods in Chemical and Biological Engineering
Author: Binay Kanti Dutta
Publisher: CRC Press
Total Pages: 718
Release: 2016-11-03
Genre: Mathematics
ISBN: 1482210401

Mathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.

Numerical Techniques for Chemical and Biological Engineers Using MATLAB®

Numerical Techniques for Chemical and Biological Engineers Using MATLAB®
Author: Said S.E.H. Elnashaie
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2007-03-12
Genre: Mathematics
ISBN: 0387681671

This interdisciplinary book presents numerical techniques needed for chemical and biological engineers using Matlab. The book begins by exploring general cases, and moves on to specific ones. The text includes a large number of detailed illustrations, exercises and industrial examples. The book provides detailed mathematics and engineering background in the appendixes, including an introduction to Matlab. The text will be useful to undergraduate students in chemical/biological engineering, and in applied mathematics and numerical analysis.

Applied Mathematical Methods for Chemical Engineers

Applied Mathematical Methods for Chemical Engineers
Author: Norman W. Loney
Publisher: CRC Press
Total Pages: 561
Release: 2016-03-09
Genre: Mathematics
ISBN: 1466553014

This book uses worked examples to showcase several mathematical methods that are essential to solving real-world process engineering problems. The third edition includes additional examples related to process control, Bessel Functions, and contemporary areas such as drug delivery. The author inserts more depth on specific applications such as nonhomogeneous cases of separation of variables, adds a section on special types of matrices such as upper- and lower-triangular matrices, incorporates examples related to biomedical engineering applications, and expands the problem sets of numerous chapters.

Chemical and Biomedical Engineering Calculations Using Python

Chemical and Biomedical Engineering Calculations Using Python
Author: Jeffrey J. Heys
Publisher: John Wiley & Sons
Total Pages: 278
Release: 2017-01-10
Genre: Technology & Engineering
ISBN: 1119267064

Presents standard numerical approaches for solving common mathematical problems in engineering using Python. Covers the most common numerical calculations used by engineering students Covers Numerical Differentiation and Integration, Initial Value Problems, Boundary Value Problems, and Partial Differential Equations Focuses on open ended, real world problems that require students to write a short report/memo as part of the solution process Includes an electronic download of the Python codes presented in the book

Mathematical Methods in Chemical and Biological Engineering

Mathematical Methods in Chemical and Biological Engineering
Author: BINAY KANTI. DUTTA
Publisher: CRC Press
Total Pages: 694
Release: 2020-12-18
Genre:
ISBN: 9780367736736

Mathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.

Non-Local Partial Differential Equations for Engineering and Biology

Non-Local Partial Differential Equations for Engineering and Biology
Author: Nikos I. Kavallaris
Publisher: Springer
Total Pages: 310
Release: 2017-11-28
Genre: Technology & Engineering
ISBN: 3319679449

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.

Biomedical Mass Transport and Chemical Reaction

Biomedical Mass Transport and Chemical Reaction
Author: James S. Ultman
Publisher: John Wiley & Sons
Total Pages: 654
Release: 2016-06-13
Genre: Technology & Engineering
ISBN: 0471656321

Teaches the fundamentals of mass transport with a unique approach emphasizing engineering principles in a biomedical environment Includes a basic review of physiology, chemical thermodynamics, chemical kinetics, mass transport, fluid mechanics and relevant mathematical methods Teaches engineering principles and mathematical modelling useful in the broad range of problems that students will encounter in their academic programs as well as later on in their careers Illustrates principles with examples taken from physiology and medicine or with design problems involving biomedical devices Stresses the simplification of problem formulations based on key geometric and functional features that permit practical analyses of biomedical applications Offers a web site of homework problems associated with each chapter and solutions available to instructors Homework problems related to each chapter are available from a supplementary website (

MATHEMATICAL METHODS IN CHEMICAL ENGINEERING

MATHEMATICAL METHODS IN CHEMICAL ENGINEERING
Author: S. PUSHPAVANAM
Publisher: PHI Learning Pvt. Ltd.
Total Pages: 340
Release: 1998-01-01
Genre: Science
ISBN: 9788120312623

This comprehensive, well organized and easy to read book presents concepts in a unified framework to establish a similarity in the methods of solutions and analysis of such diverse systems as algebraic equations, ordinary differential equations and partial differential equations. The distin-guishing feature of the book is the clear focus on analytical methods of solving equations. The text explains how the methods meant to elucidate linear problems can be extended to analyse nonlinear problems. The book also discusses in detail modern concepts like bifurcation theory and chaos.To attract engineering students to applied mathematics, the author explains the concepts in a clear, concise and straightforward manner, with the help of examples and analysis. The significance of analytical methods and concepts for the engineer/scientist interested in numerical applications is clearly brought out.Intended as a textbook for the postgraduate students in engineering, the book could also be of great help to the research students.