Mathematics of Digital Images

Mathematics of Digital Images
Author: S. G. Hoggar
Publisher: Cambridge University Press
Total Pages: 896
Release: 2006-09-14
Genre: Computers
ISBN: 9781139451352

Compression, restoration and recognition are three of the key components of digital imaging. The mathematics needed to understand and carry out all these components are explained here in a style that is at once rigorous and practical with many worked examples, exercises with solutions, pseudocode, and sample calculations on images. The introduction lists fast tracks to special topics such as Principal Component Analysis, and ways into and through the book, which abounds with illustrations. The first part describes plane geometry and pattern-generating symmetries, along with some on 3D rotation and reflection matrices. Subsequent chapters cover vectors, matrices and probability. These are applied to simulation, Bayesian methods, Shannon's information theory, compression, filtering and tomography. The book will be suited for advanced courses or for self-study. It will appeal to all those working in biomedical imaging and diagnosis, computer graphics, machine vision, remote sensing, image processing and information theory and its applications.

Digital Image Processing

Digital Image Processing
Author: J M Blackledge
Publisher: Elsevier
Total Pages: 826
Release: 2005-11-30
Genre: Computers
ISBN: 0857099469

This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research themes. - Provides mathematical methods required to describe images, image formation and different imaging systems - Outlines the principle techniques used for processing digital images - Relates the methods of processing and interpreting digital images to the 'physics' of imaging systems

Image Processing

Image Processing
Author: Jonathan M. Blackledge
Publisher:
Total Pages: 548
Release: 1997
Genre: Computers
ISBN:

Digital image processing technology has developed markedly over the last ten years, and more and more information is being conveyed through its display and analysis. The way in which image data is stored and processed is fundamental to all aspects of information technology. Examples include remote sensing using digital satellites; making diagnoses using conventional X-ray computed tomography; and research into the behavior of the human brain using magnetic resonance imaging. This book consists of twenty-one papers that collectively cover a broad range of image processing problems and the way in which their solutions are used in different areas of science and technology. The papers present details of the ways computers of varying processing power can be programmed to store images efficiently, resolve features and patterns that are either time consuming or impossible for humans to interpret, and develop machines that can "see" like humans. They also discuss a wide range of applications, including the use of lasers for studying dynamic behavior of mechanical components, and fractal geometry for recognizing patterns. The book will be useful to any engineer, scientist, and technologist interested in current research issues in image processing.

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging
Author: Charles L. Epstein
Publisher: SIAM
Total Pages: 794
Release: 2008-01-01
Genre: Mathematics
ISBN: 9780898717792

At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.

Making Images with Mathematics

Making Images with Mathematics
Author: Alexei Sourin
Publisher: Springer Nature
Total Pages: 248
Release: 2021-06-01
Genre: Computers
ISBN: 3030698351

This textbook teaches readers how to turn geometry into an image on a computer screen. This exciting journey begins in the schools of the ancient Greek philosophers, and describes the major events that changed people’s perception of geometry. The readers will learn how to see geometry and colors beyond simple mathematical formulas and how to represent geometric shapes, transformations and motions by digital sampling of various mathematical functions. Special multiplatform visualization software developed by the author will allow readers to explore the exciting world of visual immersive mathematics, and the book software repository will provide a starting point for their own sophisticated visualization applications. Making Images with Mathematics serves as a self-contained text for a one-semester computer graphics and visualization course for computer science and engineering students, as well as a reference manual for researchers and developers.

Image Processing and Analysis

Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
Total Pages: 414
Release: 2005-09-01
Genre: Computers
ISBN: 089871589X

This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.

Principles of Digital Image Processing

Principles of Digital Image Processing
Author: Wilhelm Burger
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2013-11-18
Genre: Computers
ISBN: 1848829191

This textbook is the third of three volumes which provide a modern, algorithmic introduction to digital image processing, designed to be used both by learners desiring a firm foundation on which to build, and practitioners in search of critical analysis and concrete implementations of the most important techniques. This volume builds upon the introductory material presented in the first two volumes with additional key concepts and methods in image processing. Features: practical examples and carefully constructed chapter-ending exercises; real implementations, concise mathematical notation, and precise algorithmic descriptions designed for programmers and practitioners; easily adaptable Java code and completely worked-out examples for easy inclusion in existing applications; uses ImageJ; provides a supplementary website with the complete Java source code, test images, and corrections; additional presentation tools for instructors including a complete set of figures, tables, and mathematical elements.

An Image Processing Tour of College Mathematics

An Image Processing Tour of College Mathematics
Author: Yevgeniy V. Galperin
Publisher: Chapman & Hall/CRC
Total Pages: 336
Release: 2020
Genre: Mathematics
ISBN: 9780429400612

"An Image Processing Tour of College Mathematics aims to provide meaningful context for reviewing key topics of college mathematics curriculum, to help students gain confidence in using concepts and techniques of applied mathematics, to increase the students' awareness of recent developments in mathematical sciences, and to help students prepare for graduate studies. The topics covered include a library of elementary functions, basic concepts of descriptive statistics, probability distributions of functions of random variables, definitions and concepts behind first- and second-order derivatives, most concepts and techniques of traditional linear algebra courses, an introduction to Fourier analysis, and a variety of discrete wavelet transforms - all of that in the context of digital image processing. Features Pre-calculus material and basic concepts of descriptive statistics are reviewed in the context of image processing in the spatial domain. Key concepts of linear algebra are reviewed both in the context of fundamental operations with digital images and in the more advanced context of discrete wavelet transforms. Some of the key concepts of probability theory are reviewed in the context of image equalization and histogram matching. The convolution operation is introduced painlessly and naturally in the context of naèive filtering for denoising and is subsequently used for edge detection and image restoration. An accessible elementary introduction to Fourier analysis is provided in the context of image restoration. Discrete wavelet transforms are introduced in the context of image compression, and the readers become more aware of some of the recent developments in applied mathematics. The text helps students of mathematics ease their way into mastering the basics of scientific computer programming"--

Digital Geometry

Digital Geometry
Author: Reinhard Klette
Publisher: Morgan Kaufmann
Total Pages: 676
Release: 2004-08-06
Genre: Computers
ISBN: 1558608613

The first book on digital geometry by the leaders in the field.