Microbial Bioinformatics in the Oil and Gas Industry

Microbial Bioinformatics in the Oil and Gas Industry
Author: Kenneth Wunch
Publisher: CRC Press
Total Pages: 293
Release: 2021-07-15
Genre: Technology & Engineering
ISBN: 1000410765

This book brings together contributions from leading scientists, academics, and experts from the oil and gas industry to discuss microbial-related problems faced by the industry and how bioinformatics and an interdisciplinary scientific approach can address these challenges. Microbial Bioinformatics in the Oil and Gas Industry: Applications to Reservoirs and Processes presents the major industrial problems caused by microbes (e.g., souring, biocorrosion) as well as the beneficial activities (e.g., biofuels, bioremediation). FEATURES Offers a detailed description of how bioinformatics has advanced our understanding of numerous issues in the oil and gas industry Covers cases from geographically diverse oil fields, laboratories, and research groups Contains fundamentals and applied information of relevance to the oil and gas sector Presents contributions from a team of international experts across industry and academia With its cross-disciplinary approach, this comprehensive book provides microbial ecologists, molecular biologists, operators, engineers, chemists, and academics involved in the sector with an improved understanding of the significance of microbial bioinformatics applications in the oil and gas industry.

Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry

Microbiologically Influenced Corrosion in the Upstream Oil and Gas Industry
Author: Torben Lund Skovhus
Publisher: CRC Press
Total Pages: 532
Release: 2017-03-03
Genre: Technology & Engineering
ISBN: 1498726607

Microorganisms are ubiquitously present in petroleum reservoirs and the facilities that produce them. Pipelines, vessels, and other equipment used in upstream oil and gas operations provide a vast and predominantly anoxic environment for microorganisms to thrive. The biggest technical challenge resulting from microbial activity in these engineered environments is the impact on materials integrity. Oilfield microorganisms can affect materials integrity profoundly through a multitude of elusive (bio)chemical mechanisms, collectively referred to as microbiologically influenced corrosion (MIC). MIC is estimated to account for 20 to 30% of all corrosion-related costs in the oil and gas industry. This book is intended as a comprehensive reference for integrity engineers, production chemists, oilfield microbiologists, and scientists working in the field of petroleum microbiology or corrosion. Exhaustively researched by leaders from both industry and academia, this book discusses the latest technological and scientific advances as well as relevant case studies to convey to readers an understanding of MIC and its effective management.

Petroleum Microbial Biotechnology: Challenges and Prospects

Petroleum Microbial Biotechnology: Challenges and Prospects
Author: Wael A. Ismail
Publisher: Frontiers Media SA
Total Pages: 236
Release: 2017-09-08
Genre:
ISBN: 2889452565

Petroleum hydrocarbons are both a product of, and rich substrate for, microorganisms from across all Domains of life. Rooted deeply in the history of microbiology, hydrocarbons have been studied as sources of carbon and energy for microorganisms for over a century. As global demand for petroleum and its refined products continues to rise, so do challenges associated with environmental pollution, oil well souring, infrastructure corrosion, oil recovery, transport, refining, and upgrading of heavy crude oils and bitumens. Advances in genomics, synthetic biology and metabolic engineering has invigorated interest in petroleum microbial biotechnology as interest grows in technologies for in situ methane production, biodesulfurization and biodenitrogenation, bio-upgrading of heavy crudes, microbial enhanced oil recovery, corrosion control, and biocatalysts for generating value-added products. Given the complexity of the global petroleum industry and the harsh conditions in which it operates, a deeper understanding of the ecophysiology of aerobic and anaerobic microbial communities that have associations with petroleum hydrocarbons is needed if robust technologies are to be deployed successfully. This research topic highlights recent advances in microbial enhanced oil recovery, methanogenic hydrocarbon metabolism and carbon dioxide sequestration, bioremediation, microbiologically influenced corrosion, biodesulfurization, and the application of metagenomics to better understand microbial communities associated with petroleum hydrocarbons.

Oilfield Microbiology

Oilfield Microbiology
Author: Torben Lund Skovhus
Publisher: CRC Press
Total Pages: 308
Release: 2019-03-29
Genre: Science
ISBN: 135167496X

Microorganisms can be both beneficial and harmful to the oil and gas industry and therefore there is an increasing need for the oil industry to characterize, quantify and monitor microbial communities in real time. Oilfield Microbiology offers a fundamental insight into how molecular microbiological methods have enabled researchers in the field to analyze and quantify in situ microbial communities and their activities in response to changing environmental conditions. Such information is fundamental to the oil industry to employ more directed, cost-effective strategies to prevent the major problems associated with deleterious microbial activities (e.g., souring and biocorrosion), as well as to encourage beneficial microbe activity (e.g. oil bioremediation). The aim of the book is to understand how the technological advances in molecular microbiological methods over the last two decades are now being utilized by the oil industry to address the key issues faced by the sector. This book contains a comprehensive collection of chapters written by invited experts in the field from academia and industry and provides a solid foundation of the importance of microbes to the oil and gas industry. It is aimed at microbial ecologists, molecular biologists, operators, engineers, chemists, and academics involved in the sector.

Theory and Practice in Microbial Enhanced Oil Recovery

Theory and Practice in Microbial Enhanced Oil Recovery
Author: Kun Sang Lee
Publisher: Gulf Professional Publishing
Total Pages: 214
Release: 2020-07-18
Genre: Technology & Engineering
ISBN: 0128204257

Selection of the optimal recovery method is significantly influenced by economic issues in today's oil and gas markets. Consequently, the development of cost-effective technologies, which bring maximum oil recovery, is the main interest in today's petroleum research communities. Theory and Practice in Microbial Enhanced Oil Recovery provides the fundamentals, latest research and creditable field applications. Microbial Enhanced Oil Recovery (MEOR) is potentially a low-priced and eco-friendly technique in which different microorganisms and their metabolic products are implemented to recover the remaining oil in the reservoir. Despite drastic advantages of MEOR technology, it is still not fully supported in the industry due to lack of knowledge on microbial activities and their complexity of the process. While some selected strategies have demonstrated the feasibility to be used on a mass scale through both lab and field trials, more research remains to implement MEOR into more oil industry practices. This reference delivers comprehensive descriptions on the fundamentals including basic theories on geomicrobiology, experiments and modeling, as well as current tested field applications. Theory and Practice in Microbial Enhanced Oil Recovery gives engineers and researchers the tool needed to stay up to date on this evolving and more sustainable technology. - Covers fundamental screening criteria and theories selective plugging and mobility control mechanisms - Describes the basic effects on environmental parameters and the mechanics of simulation, including microbial growth kinetics - Applies up to date practical applications proven in both the lab and the field

Applied Microbiology and Molecular Biology in Oilfield Systems

Applied Microbiology and Molecular Biology in Oilfield Systems
Author: Corinne Whitby
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2010-10-13
Genre: Science
ISBN: 9048192528

Applied Microbiology and Molecular Biology in Oil Field Systems addresses the major problems microbes cause in oil fields, (e.g. biocorrosion and souring) and how beneficial microbial activities may be exploited (e.g. MEOR and biofuels). The book describes theoretical and practical approaches to specific Molecular Microbiological Methods (MMM), and is written by leading authorities in the field from both academia and industry. The book describes how MMM can be applied to faciliate better management of oil reservoirs and downstream processes. The book is innovative in that it utilises real industrial case studies which gives useful technical and scientific information to researchers, engineers and microbiologists working with oil, gas and petroleum systems.

Microbial Biotechnology

Microbial Biotechnology
Author: Jayanta Kumar Patra
Publisher: Springer
Total Pages: 544
Release: 2018-02-14
Genre: Medical
ISBN: 9811071403

This edited book, is a collection of 25 chapters describing the recent advancements in the application of microbial technology in the food and pharmacology sector. The main focus of this book is application of microbes, food preservation techniques utilizing microbes, probiotics, seaweeds, algae, enzymatic abatement of urethane in fermentation of beverages, bioethanol production, pesticides, probiotic biosurfactants, drought tolerance, synthesis of application of oncolytic viruses in cancer treatment, microbe based metallic nanoparticles, agro chemicals, endophytes, metabolites, antibiotics etc. This book highlighted the significant aspects of the vast subject area of microbial biotechnology and their potential applications in food and pharmacology with various topics from eminent experts around the World. This book would serve as an excellent reference book for researchers and students in the Food Science, Food Biotechnology, Microbiology and Pharmaceutical fields.