Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®
Author: Liuping Wang
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2009-02-14
Genre: Technology & Engineering
ISBN: 1848823312

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®
Author: Liuping Wang
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2009-03-04
Genre: Technology & Engineering
ISBN: 1848823304

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB®
Author: Liuping Wang
Publisher: Springer
Total Pages: 0
Release: 2010-10-21
Genre: Technology & Engineering
ISBN: 9781849968362

Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Practical Design and Application of Model Predictive Control

Practical Design and Application of Model Predictive Control
Author: Nassim Khaled
Publisher: Butterworth-Heinemann
Total Pages: 264
Release: 2018-05-04
Genre: Technology & Engineering
ISBN: 0128139196

Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. - Illustrates how to design, tune and deploy MPC for projects in a quick manner - Demonstrates a variety of applications that are solved using MATLAB® and Simulink® - Bridges the gap in providing a number of realistic problems with very hands-on training - Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work - Presents application problems with solutions to help reinforce the information learned

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink
Author: Liuping Wang
Publisher: John Wiley & Sons
Total Pages: 369
Release: 2015-03-02
Genre: Science
ISBN: 1118339444

A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.

PID Control System Design and Automatic Tuning using MATLAB/Simulink

PID Control System Design and Automatic Tuning using MATLAB/Simulink
Author: Liuping Wang
Publisher: John Wiley & Sons
Total Pages: 366
Release: 2020-04-20
Genre: Science
ISBN: 1119469341

Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.

Predictive Control for Linear and Hybrid Systems

Predictive Control for Linear and Hybrid Systems
Author: Francesco Borrelli
Publisher: Cambridge University Press
Total Pages: 447
Release: 2017-06-22
Genre: Mathematics
ISBN: 1107016886

With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).

Model Predictive Control in the Process Industry

Model Predictive Control in the Process Industry
Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447130081

Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters

Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters
Author: Alfeu Sguarezi
Publisher: Elsevier
Total Pages: 246
Release: 2022-01-06
Genre: Technology & Engineering
ISBN: 0323903231

Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters describes the application of model predictive control techniques with modulator and finite control sets to squirrel cage induction motor and in doubly-fed induction generators using field orientation control techniques as both current control and direct power control. Sections discuss induction machines, their key modulation techniques, introduce the utility of model predictive control, review core concepts of vector control, direct torque control, and direct power control alongside novel approaches of MPC. Mathematical modeling of cited systems, MPC theory, their applications, MPC design and simulation in MATLAB are also considered in-depth. The work concludes by addressing implementation considerations, including generator operation under voltage sags or distorted voltage and inverters connected to the grid operating under distorted voltage. Experimental results are presented in full. - Adopts model predictive control design for optimized induction machines geared for complex grid dynamics - Demonstrates how to simulate model predictive control using MATLAB and Simulink - Presents information about hardware implementation to obtain experimental results - Covers generator operation under voltage sags or distorted voltage