Modern Optimization with R

Modern Optimization with R
Author: Paulo Cortez
Publisher: Springer Nature
Total Pages: 264
Release: 2021-07-30
Genre: Computers
ISBN: 3030728196

The goal of this book is to gather in a single work the most relevant concepts related in optimization methods, showing how such theories and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in computer science, information technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R. This new edition integrates the latest R packages through text and code examples. It also discusses new topics, such as: the impact of artificial intelligence and business analytics in modern optimization tasks; the creation of interactive Web applications; usage of parallel computing; and more modern optimization algorithms (e.g., iterated racing, ant colony optimization, grammatical evolution).

Modern Optimization with R

Modern Optimization with R
Author: Paulo Cortez
Publisher: Springer
Total Pages: 188
Release: 2014-09-22
Genre: Mathematics
ISBN: 9783319082622

The goal of this book is to gather in a single document the most relevant concepts related to modern optimization methods, showing how such concepts and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in Computer Science, Information Technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R.

Modern Portfolio Optimization with NuOPTTM, S-PLUSĀ®, and S+BayesTM

Modern Portfolio Optimization with NuOPTTM, S-PLUSĀ®, and S+BayesTM
Author: Bernd Scherer
Publisher: Springer Science & Business Media
Total Pages: 422
Release: 2007-09-05
Genre: Business & Economics
ISBN: 038727586X

In recent years portfolio optimization and construction methodologies have become an increasingly critical ingredient of asset and fund management, while at the same time portfolio risk assessment has become an essential ingredient in risk management. This trend will only accelerate in the coming years. This practical handbook fills the gap between current university instruction and current industry practice. It provides a comprehensive computationally-oriented treatment of modern portfolio optimization and construction methods using the powerful NUOPT for S-PLUS optimizer.

Modern Optimization Methods for Science, Engineering and Technology

Modern Optimization Methods for Science, Engineering and Technology
Author: G. R. Sinha
Publisher:
Total Pages: 0
Release: 2019
Genre: Electronic books
ISBN: 9780750324045

Achieving a better solution or improving the performance of existing system design is an ongoing a process for which scientists, engineers, mathematicians and researchers have been striving for many years. Ever increasingly practical and robust methods have been developed, and every new generation of computers with their increased power and speed allows for the development and wider application of new types of solutions. This book defines the fundamentals, background and theoretical concepts of optimization principles in a comprehensive manner along with their potential applications and implementation strategies. It encompasses linear programming, multivariable methods for risk assessment, nonlinear methods, ant colony optimization, particle swarm optimization, multi-criterion and topology optimization, learning classifier, case studies on six sigma, performance measures and evaluation, multi-objective optimization problems, machine learning approaches, genetic algorithms and quality of service optimizations. The book will be very useful for wide spectrum of target readers including students and researchers in academia and industry.

Optimization Models

Optimization Models
Author: Giuseppe C. Calafiore
Publisher: Cambridge University Press
Total Pages: 651
Release: 2014-10-31
Genre: Business & Economics
ISBN: 1107050871

This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.

Classical And Modern Optimization

Classical And Modern Optimization
Author: Guillaume Carlier
Publisher: World Scientific
Total Pages: 388
Release: 2022-03-16
Genre: Mathematics
ISBN: 180061067X

The quest for the optimal is ubiquitous in nature and human behavior. The field of mathematical optimization has a long history and remains active today, particularly in the development of machine learning.Classical and Modern Optimization presents a self-contained overview of classical and modern ideas and methods in approaching optimization problems. The approach is rich and flexible enough to address smooth and non-smooth, convex and non-convex, finite or infinite-dimensional, static or dynamic situations. The first chapters of the book are devoted to the classical toolbox: topology and functional analysis, differential calculus, convex analysis and necessary conditions for differentiable constrained optimization. The remaining chapters are dedicated to more specialized topics and applications.Valuable to a wide audience, including students in mathematics, engineers, data scientists or economists, Classical and Modern Optimization contains more than 200 exercises to assist with self-study or for anyone teaching a third- or fourth-year optimization class.

Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization
Author: Aharon Ben-Tal
Publisher: SIAM
Total Pages: 500
Release: 2001-01-01
Genre: Technology & Engineering
ISBN: 0898714915

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Financial Risk Modelling and Portfolio Optimization with R

Financial Risk Modelling and Portfolio Optimization with R
Author: Bernhard Pfaff
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2016-08-16
Genre: Mathematics
ISBN: 1119119685

Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.