Multivariate Analysis for the Behavioral Sciences, Second Edition

Multivariate Analysis for the Behavioral Sciences, Second Edition
Author: Kimmo Vehkalahti
Publisher: CRC Press
Total Pages: 444
Release: 2018-12-19
Genre: Mathematics
ISBN: 1351202251

Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics

Statistical Power Analysis for the Behavioral Sciences

Statistical Power Analysis for the Behavioral Sciences
Author: Jacob Cohen
Publisher: Routledge
Total Pages: 625
Release: 2013-05-13
Genre: Psychology
ISBN: 1134742770

Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.

Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences

Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences
Author: Brian S. Everitt
Publisher: CRC Press
Total Pages: 324
Release: 2009-09-28
Genre: Business & Economics
ISBN: 1439807701

Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues.The author begins by exploring

Applied Power Analysis for the Behavioral Sciences

Applied Power Analysis for the Behavioral Sciences
Author: Christopher L. Aberson
Publisher: Routledge
Total Pages: 194
Release: 2019-01-24
Genre: Psychology
ISBN: 1351695061

Applied Power Analysis for the Behavioral Sciences is a practical "how-to" guide to conducting statistical power analyses for psychology and related fields. The book provides a guide to conducting analyses that is appropriate for researchers and students, including those with limited quantitative backgrounds. With practical use in mind, the text provides detailed coverage of topics such as how to estimate expected effect sizes and power analyses for complex designs. The topical coverage of the text, an applied approach, in-depth coverage of popular statistical procedures, and a focus on conducting analyses using R make the text a unique contribution to the power literature. To facilitate application and usability, the text includes ready-to-use R code developed for the text. An accompanying R package called pwr2ppl (available at https://github.com/chrisaberson/pwr2ppl) provides tools for conducting power analyses across each topic covered in the text.

Categorical Data Analysis for the Behavioral and Social Sciences

Categorical Data Analysis for the Behavioral and Social Sciences
Author: Razia Azen
Publisher: Taylor & Francis
Total Pages: 327
Release: 2021-05-26
Genre: Psychology
ISBN: 100038389X

Featuring a practical approach with numerous examples, the second edition of Categorical Data Analysis for the Behavioral and Social Sciences focuses on helping the reader develop a conceptual understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analysis methods and emphasize specific research questions that can be addressed by each analytic procedure, including how to obtain results using SPSS, SAS, and R, so that readers are able to address the research questions they wish to answer. Each chapter begins with a "Look Ahead" section to highlight key content. This is followed by an in-depth focus and explanation of the relationship between the initial research question, the use of software to perform the analyses, and how to interpret the output substantively. Included at the end of each chapter are a range of software examples and questions to test knowledge. New to the second edition: The addition of R syntax for all analyses and an update of SPSS and SAS syntax. The addition of a new chapter on GLMMs. Clarification of concepts and ideas that graduate students found confusing, including revised problems at the end of the chapters. Written for those without an extensive mathematical background, this book is ideal for a graduate course in categorical data analysis taught in departments of psychology, educational psychology, human development and family studies, sociology, public health, and business. Researchers in these disciplines interested in applying these procedures will also appreciate this book’s accessible approach.

Applied Multivariate Research

Applied Multivariate Research
Author: Lawrence S. Meyers
Publisher: SAGE Publications
Total Pages: 938
Release: 2016-10-28
Genre: Social Science
ISBN: 1506329780

Using a conceptual, non-mathematical approach, the updated Third Edition provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.

Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences

Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Author: Patricia Cohen
Publisher: Psychology Press
Total Pages: 572
Release: 2014-04-04
Genre: Psychology
ISBN: 1135468249

This classic text on multiple regression is noted for its nonmathematical, applied, and data-analytic approach. Readers profit from its verbal-conceptual exposition and frequent use of examples. The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying CD with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT. Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.

Exploratory Multivariate Analysis by Example Using R

Exploratory Multivariate Analysis by Example Using R
Author: Francois Husson
Publisher: CRC Press
Total Pages: 263
Release: 2017-04-25
Genre: Mathematics
ISBN: 1315301865

Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) a

Applied Multivariate Analysis

Applied Multivariate Analysis
Author: S. James Press
Publisher: Courier Corporation
Total Pages: 706
Release: 2012-09-05
Genre: Mathematics
ISBN: 0486139387

Geared toward upper-level undergraduates and graduate students, this two-part treatment deals with the foundations of multivariate analysis as well as related models and applications. Starting with a look at practical elements of matrix theory, the text proceeds to discussions of continuous multivariate distributions, the normal distribution, and Bayesian inference; multivariate large sample distributions and approximations; the Wishart and other continuous multivariate distributions; and basic multivariate statistics in the normal distribution. The second half of the text moves from defining the basics to explaining models. Topics include regression and the analysis of variance; principal components; factor analysis and latent structure analysis; canonical correlations; stable portfolio analysis; classifications and discrimination models; control in the multivariate linear model; and structuring multivariate populations, with particular focus on multidimensional scaling and clustering. In addition to its value to professional statisticians, this volume may also prove helpful to teachers and researchers in those areas of behavioral and social sciences where multivariate statistics is heavily applied. This new edition features an appendix of answers to the exercises.