Neural Networks and Deep Learning

Neural Networks and Deep Learning
Author: Charu C. Aggarwal
Publisher: Springer
Total Pages: 512
Release: 2018-08-25
Genre: Computers
ISBN: 3319944630

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Deep Learning

Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
Total Pages: 801
Release: 2016-11-10
Genre: Computers
ISBN: 0262337371

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Talking Nets

Talking Nets
Author: James A. Anderson
Publisher: MIT Press
Total Pages: 452
Release: 2000-02-28
Genre: Medical
ISBN: 9780262511117

Surprising tales from the scientists who first learned how to use computers to understand the workings of the human brain. Since World War II, a group of scientists has been attempting to understand the human nervous system and to build computer systems that emulate the brain's abilities. Many of the early workers in this field of neural networks came from cybernetics; others came from neuroscience, physics, electrical engineering, mathematics, psychology, even economics. In this collection of interviews, those who helped to shape the field share their childhood memories, their influences, how they became interested in neural networks, and what they see as its future. The subjects tell stories that have been told, referred to, whispered about, and imagined throughout the history of the field. Together, the interviews form a Rashomon-like web of reality. Some of the mythic people responsible for the foundations of modern brain theory and cybernetics, such as Norbert Wiener, Warren McCulloch, and Frank Rosenblatt, appear prominently in the recollections. The interviewees agree about some things and disagree about more. Together, they tell the story of how science is actually done, including the false starts, and the Darwinian struggle for jobs, resources, and reputation. Although some of the interviews contain technical material, there is no actual mathematics in the book. Contributors James A. Anderson, Michael Arbib, Gail Carpenter, Leon Cooper, Jack Cowan, Walter Freeman, Stephen Grossberg, Robert Hecht-Neilsen, Geoffrey Hinton, Teuvo Kohonen, Bart Kosko, Jerome Lettvin, Carver Mead, David Rumelhart, Terry Sejnowski, Paul Werbos, Bernard Widrow

Neural Smithing

Neural Smithing
Author: Russell Reed
Publisher: MIT Press
Total Pages: 359
Release: 1999-02-17
Genre: Computers
ISBN: 0262181908

Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Neural Networks

Neural Networks
Author: Raul Rojas
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2013-06-29
Genre: Computers
ISBN: 3642610684

Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

An Introduction to Neural Networks

An Introduction to Neural Networks
Author: James A. Anderson
Publisher: MIT Press
Total Pages: 680
Release: 1995
Genre: Computers
ISBN: 9780262510813

An Introduction to Neural Networks falls into a new ecological niche for texts. Based on notes that have been class-tested for more than a decade, it is aimed at cognitive science and neuroscience students who need to understand brain function in terms of computational modeling, and at engineers who want to go beyond formal algorithms to applications and computing strategies. It is the only current text to approach networks from a broad neuroscience and cognitive science perspective, with an emphasis on the biology and psychology behind the assumptions of the models, as well as on what the models might be used for. It describes the mathematical and computational tools needed and provides an account of the author's own ideas. Students learn how to teach arithmetic to a neural network and get a short course on linear associative memory and adaptive maps. They are introduced to the author's brain-state-in-a-box (BSB) model and are provided with some of the neurobiological background necessary for a firm grasp of the general subject. The field now known as neural networks has split in recent years into two major groups, mirrored in the texts that are currently available: the engineers who are primarily interested in practical applications of the new adaptive, parallel computing technology, and the cognitive scientists and neuroscientists who are interested in scientific applications. As the gap between these two groups widens, Anderson notes that the academics have tended to drift off into irrelevant, often excessively abstract research while the engineers have lost contact with the source of ideas in the field. Neuroscience, he points out, provides a rich and valuable source of ideas about data representation and setting up the data representation is the major part of neural network programming. Both cognitive science and neuroscience give insights into how this can be done effectively: cognitive science suggests what to compute and neuroscience suggests how to compute it.

Neural Networks

Neural Networks
Author: Doug Alexander
Publisher:
Total Pages: 232
Release: 2020
Genre: Computers
ISBN: 9781536172331

"With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--

An Introduction to Neural Networks

An Introduction to Neural Networks
Author: Kevin Gurney
Publisher: CRC Press
Total Pages: 234
Release: 2018-10-08
Genre: Computers
ISBN: 1482286998

Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning
Author: Ke-Lin Du
Publisher: Springer Science & Business Media
Total Pages: 834
Release: 2013-12-09
Genre: Technology & Engineering
ISBN: 1447155718

Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.