Neuroimaging Workflow Design and Data-Mining

Neuroimaging Workflow Design and Data-Mining
Author: John Van Horn
Publisher: Frontiers Media SA
Total Pages: 121
Release: 2012-04-01
Genre:
ISBN: 2889190226

With the increasing number of neuroimaging studies appearing yearly in the literature, the need to consider the synthesis of the underlying data into new knowledge and research directions has never been more important. The development of large-scale databases and grid-enabled computing has laid the groundwork for mining these rich datasets beyond the scope of their initial collection. Additionally, meta-analyses of the summary results contained in published research articles have provided a powerful way to explore hidden trends in the neuroscience literature. In each case, the processing of data requires a careful consideration of the individual processing steps involved and how they can be assembled into reliable workflows. In results from published studies, the manner in which data were processed may influence meta-analytic results which can have implications on clinical interpretation. Several efforts now exist that provide tools for use in the construction of data processing workflows. However, careful thought must be given to ensuring appropriate, efficient, optimal, and replicable processing. The results obtained from data-mining and meta-analysis must tell a story about a collection of existing data. Also they must suggest novel and testable hypotheses for further investigation with implications for understanding of the brain in health and disease. Where they do, these new results and interpretations often provide fresh insights into the data that extend beyond the rationale for their original collection. In this volume, we have asked leaders in the field of neuroimaging data mining and meta-analysis to provide their thoughts on methods for efficient workflow design, interoperability with large-scale databases, and to discuss their work in exploring the richness of brain imaging data as well as the literature of published research results.

Handbook of Neuroimaging Data Analysis

Handbook of Neuroimaging Data Analysis
Author: Hernando Ombao
Publisher: CRC Press
Total Pages: 702
Release: 2016-11-18
Genre: Mathematics
ISBN: 1482220989

This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Recent Advances and the Future Generation of Neuroinformatics Infrastructure

Recent Advances and the Future Generation of Neuroinformatics Infrastructure
Author: Xi Cheng
Publisher: Frontiers Media SA
Total Pages: 390
Release: 2015-12-11
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889196771

The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.

Brain Informatics and Health

Brain Informatics and Health
Author: Dominik Slezak
Publisher: Springer
Total Pages: 615
Release: 2014-07-14
Genre: Computers
ISBN: 3319098918

This book constitutes the proceedings of the International Conference on Brain Informatics and Health, BIH 2014, held in Warsaw, Poland, in August 2014, as part of 2014 Web Intelligence Congress, WIC 2014. The 29 full papers presented together with 23 special session papers were carefully reviewed and selected from 101 submissions. The papers are organized in topical sections on brain understanding; cognitive modelling; brain data analytics; health data analytics; brain informatics and data management; semantic aspects of biomedical analytics; healthcare technologies and systems; analysis of complex medical data; understanding of information processing in brain; neuroimaging data processing strategies; advanced methods of interactive data mining for personalized medicine.

Python in Neuroscience

Python in Neuroscience
Author: Eilif Muller
Publisher: Frontiers Media SA
Total Pages: 275
Release: 2015-07-23
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889196089

Python is rapidly becoming the de facto standard language for systems integration. Python has a large user and developer-base external to theneuroscience community, and a vast module library that facilitates rapid and maintainable development of complex and intricate systems. In this Research Topic, we highlight recent efforts to develop Python modules for the domain of neuroscience software and neuroinformatics: - simulators and simulator interfaces - data collection and analysis - sharing, re-use, storage and databasing of models and data - stimulus generation - parameter search and optimization - visualization - VLSI hardware interfacing. Moreover, we seek to provide a representative overview of existing mature Python modules for neuroscience and neuroinformatics, to demonstrate a critical mass and show that Python is an appropriate choice of interpreter interface for future neuroscience software development.

MAPPING: MAnagement and Processing of Images for Population ImagiNG

MAPPING: MAnagement and Processing of Images for Population ImagiNG
Author: Michel Dojat
Publisher: Frontiers Media SA
Total Pages: 141
Release: 2017-09-04
Genre:
ISBN: 2889452603

Several recent papers underline methodological points that limit the validity of published results in imaging studies in the life sciences and especially the neurosciences (Carp, 2012; Ingre, 2012; Button et al., 2013; Ioannidis, 2014). At least three main points are identified that lead to biased conclusions in research findings: endemic low statistical power and, selective outcome and selective analysis reporting. Because of this, and in view of the lack of replication studies, false discoveries or solutions persist. To overcome the poor reliability of research findings, several actions should be promoted including conducting large cohort studies, data sharing and data reanalysis. The construction of large-scale online databases should be facilitated, as they may contribute to the definition of a “collective mind” (Fox et al., 2014) facilitating open collaborative work or “crowd science” (Franzoni and Sauermann, 2014). Although technology alone cannot change scientists’ practices (Wicherts et al., 2011; Wallis et al., 2013, Poldrack and Gorgolewski 2014; Roche et al. 2014), technical solutions should be identified which support a more “open science” approach. Also, the analysis of the data plays an important role. For the analysis of large datasets, image processing pipelines should be constructed based on the best algorithms available and their performance should be objectively compared to diffuse the more relevant solutions. Also, provenance of processed data should be ensured (MacKenzie-Graham et al., 2008). In population imaging this would mean providing effective tools for data sharing and analysis without increasing the burden on researchers. This subject is the main objective of this research topic (RT), cross-listed between the specialty section “Computer Image Analysis” of Frontiers in ICT and Frontiers in Neuroinformatics. Firstly, it gathers works on innovative solutions for the management of large imaging datasets possibly distributed in various centers. The paper of Danso et al. describes their experience with the integration of neuroimaging data coming from several stroke imaging research projects. They detail how the initial NeuroGrid core metadata schema was gradually extended for capturing all information required for future metaanalysis while ensuring semantic interoperability for future integration with other biomedical ontologies. With a similar preoccupation of interoperability, Shanoir relies on the OntoNeuroLog ontology (Temal et al., 2008; Gibaud et al., 2011; Batrancourt et al., 2015), a semantic model that formally described entities and relations in medical imaging, neuropsychological and behavioral assessment domains. The mechanism of “Study Card” allows to seamlessly populate metadata aligned with the ontology, avoiding fastidious manual entrance and the automatic control of the conformity of imported data with a predefined study protocol. The ambitious objective with the BIOMIST platform is to provide an environment managing the entire cycle of neuroimaging data from acquisition to analysis ensuring full provenance information of any derived data. Interestingly, it is conceived based on the product lifecycle management approach used in industry for managing products (here neuroimaging data) from inception to manufacturing. Shanoir and BIOMIST share in part the same OntoNeuroLog ontology facilitating their interoperability. ArchiMed is a data management system locally integrated for 5 years in a clinical environment. Not restricted to Neuroimaging, ArchiMed deals with multi-modal and multi-organs imaging data with specific considerations for data long-term conservation and confidentiality in accordance with the French legislation. Shanoir and ArchiMed are integrated into FLI-IAM1, the national French IT infrastructure for in vivo imaging.

Collaborative Efforts for Understanding the Human Brain

Collaborative Efforts for Understanding the Human Brain
Author: Sook-Lei Liew
Publisher: Frontiers Media SA
Total Pages: 192
Release: 2019-10-10
Genre:
ISBN: 2889630293

The human brain is incredibly complex, and the more we learn about it, the more we realize how much we need a truly interdisciplinary team to make sense of its intricacies. This eBook presents the latest efforts in collaborative team science from around the world, all aimed at understanding the human brain.

Software Architecture

Software Architecture
Author: Ivica Crnkovic
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2011-09-09
Genre: Computers
ISBN: 3642237975

This book constitutes the refereed proceedings of the 5th European Conference on Software Architecture, ECSA 2011, held in Essen, Germany, in September 2011. The 13 revised full papers presented together with 24 emerging research papers, and 7 research challenge poster papers were carefully reviewed and selected from over 100 submissions. The papers are organized in topical sections on requirements and software architectures; software architecture, components, and compositions; quality attributes and software architectures; software product line architectures; architectural models, patterns and styles; short papers; process and management of architectural decisions; software architecture run-time aspects; ADLs and metamodels; and services and software architectures.