Author | : National Council on Radiation Protection and Measurements |
Publisher | : Ncrp |
Total Pages | : 142 |
Release | : 1984 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : National Council on Radiation Protection and Measurements |
Publisher | : Ncrp |
Total Pages | : 142 |
Release | : 1984 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : Patton H. McGinley |
Publisher | : Medical Physics Publishing Corporation |
Total Pages | : 171 |
Release | : 2002-01-01 |
Genre | : Medical |
ISBN | : 9781930524071 |
A textbook for a senior or graduate course in medical or health physics. Students are assumed to be familiar with the radiation- producing devices used in radiation oncology. The second volume corrects some errors detected in the 1998 first, and adds discussions of intensity modulated radiation therapy, CT room design, the design of direct shielded doors, and other topics. Annotation copyrighted by Book News Inc., Portland, OR.
Author | : William P. Swanson |
Publisher | : Bernan Press(PA) |
Total Pages | : 350 |
Release | : 1979 |
Genre | : Business & Economics |
ISBN | : |
Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.
Author | : J. A. B. Gibson |
Publisher | : |
Total Pages | : 244 |
Release | : 1985 |
Genre | : Business & Economics |
ISBN | : |
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 264 |
Release | : 2016-11-28 |
Genre | : Medical |
ISBN | : 0309445310 |
The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.
Author | : International Atomic Energy Agency |
Publisher | : |
Total Pages | : 52 |
Release | : 1996 |
Genre | : Business & Economics |
ISBN | : |
On 17 November 1992 a radiological accident occurred at an electron accelerator facility in Hanoi, Viet Nam. An individual entered the irradiation room without the operators' knowledge and unwittingly exposed his hands to the X ray beam. His hands were seriously injured and one hand had to be amputated. The report details the circumstances of the accident, its medical consequences and the governmental response.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 232 |
Release | : 2008-05-25 |
Genre | : Medical |
ISBN | : 0309110149 |
In the United States there are several thousand devices containing high-activity radiation sources licensed for use in areas ranging from medical uses such as cancer therapy to safety uses such as testing of structures and industrial equipment. Those radiation sources are licensed by the U.S. Nuclear Regulatory Commission and state agencies. Concerns have been raised about the safety and security of the radiation sources, particularly amid fears that they could be used to create dirty bombs, or radiological dispersal device (RDD). In response to a request from Congress, the U.S. Nuclear Regulatory Commission asked the National Research Council to conduct a study to review the uses of high-risk radiation sources and the feasibility of replacing them with lower risk alternatives. The study concludes that the U.S. government should consider factors such as potential economic consequences of misuse of the radiation sources into its assessments of risk. Although the committee found that replacements of most sources are possible, it is not economically feasible in some cases. The committee recommends that the U.S. government take steps to in the near term to replace radioactive cesium chloride radiation sources, a potential "dirty bomb" ingredient used in some medical and research equipment, with lower-risk alternatives. The committee further recommends that longer term efforts be undertaken to replace other sources. The book presents a number of options for making those replacements.