Noise in Spintronics

Noise in Spintronics
Author: Farkhad Aliev
Publisher: CRC Press
Total Pages: 227
Release: 2018-09-04
Genre: Science
ISBN: 1351617389

This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.

Noise in Spintronics

Noise in Spintronics
Author: Farkhad Aliev
Publisher: CRC Press
Total Pages: 352
Release: 2018-09-04
Genre: Science
ISBN: 1351617397

This book covers the main physical mechanisms and the different contributions (1/f noise, shot noise, etc.) behind electronic fluctuations in various spintronic devices. It presents the first comprehensive summary of fundamental noise mechanisms in both electronic and spintronic devices and is therefore unique in that aspect. The pedagogic introduction to noise is complemented by a detailed description of how one could set up a noise measurement experiment in the lab. A further extensive description of the recent progress in understanding and controlling noise in spintronics, including the boom in 2D devices, molecular spintronics, and field sensing, is accompanied by both numerous bibliography references and tens of case studies on the fundamental aspects of noise and on some important qualitative steps to understand noise in spintronics. Moreover, a detailed discussion of unsolved problems and outlook make it an essential textbook for scientists and students desiring to exploit the information hidden in noise in both spintronics and conventional electronics.

Spintronics

Spintronics
Author: Kaiyou Wang
Publisher: John Wiley & Sons
Total Pages: 340
Release: 2022-07-25
Genre: Technology & Engineering
ISBN: 1119698979

Discover the latest advances in spintronic materials, devices, and applications In Spintronics: Materials, Devices and Applications, a team of distinguished researchers delivers a holistic introduction to spintronic effects within cutting-edge materials and applications. Containing the perfect balance of academic research and practical application, the book discusses the potential—and the key limitations and challenges—of spintronic devices. The latest title in the Wiley Series in Materials for Electronic and Optoelectronic Applications, Spintronics: Materials, Devices and Applications explores giant magneto-resistance (GMR) and tunneling magnetic resistance (TMR) materials, spin-transfer torque and spin-orbit torque materials, spin oscillators, and spin materials for use in artificial neural networks. Applications in multi-ferroelectric and antiferromagnetic materials are presented as well. This book also includes: A thorough introduction to recent research developments in the fields of spintronic materials, devices, and applications Comprehensive explorations of skymions, magnetic semiconductors, and antiferromagnetic materials Practical discussions of spin-transfer torque materials and devices for magnetic random-access memory In-depth examinations of giant magneto-resistance materials and devices for magnetic sensors Perfect for advanced students and researchers in materials science, physics, electronics, and computer science, Spintronics: Materials, Devices and Applications will also earn a place in the libraries of professionals working in the manufacture of optics, photonics, and nanometrology equipment.

Toward The Controllable Quantum States: Mesoscopic Superconductivity And Spintronics

Toward The Controllable Quantum States: Mesoscopic Superconductivity And Spintronics
Author: Hideaki Takayanagi
Publisher: World Scientific
Total Pages: 547
Release: 2003-03-19
Genre: Science
ISBN: 9814487465

The realizations of physical systems whose quantum states can be directly manipulated have been pursued for experiments on fundamental problems in quantum mechanics and implementations of quantum information devices. Micro-fabricated superconducting systems and electronic spins are among the most promising candidates. This book contains the newest and most advanced research reports on such materials, called “Mesoscopic Superconductivity” and “Spintronics”. The former includes superconductor-semiconductor hybrid systems, very small Josephson junctions, and micron-size SQUIDs. The latter includes the control of spin transports in semiconductor heterostructures, nano-scale quantum dots, and spin injections. Superconductor-ferromagnetic metal hybrid structures are covered by both of the topics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 527
Release: 2019-06-26
Genre: Science
ISBN: 042980525X

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Spintronics for Next Generation Innovative Devices

Spintronics for Next Generation Innovative Devices
Author: Katsuaki Sato
Publisher: John Wiley & Sons
Total Pages: 275
Release: 2015-09-28
Genre: Technology & Engineering
ISBN: 1118751914

Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.

Semiconductor Spintronics and Quantum Computation

Semiconductor Spintronics and Quantum Computation
Author: D.D. Awschalom
Publisher: Springer Science & Business Media
Total Pages: 321
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 366205003X

The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.

Spintronics

Spintronics
Author: Puja Dey
Publisher: Springer Nature
Total Pages: 287
Release: 2021-04-13
Genre: Science
ISBN: 9811600694

This book highlights the overview of Spintronics, including What is Spintronics ?; Why Do We Need Spintronics ?; Comparative merit-demerit of Spintronics and Electronics ; Research Efforts put on Spintronics ; Quantum Mechanics of Spin; Dynamics of magnetic moments : Landau-Lifshitz-Gilbert Equation; Spin-Dependent Band Gap in Ferromagnetic Materials; Functionality of ‘Spin’ in Spintronics; Different Branches of Spintronics etc. Some important notions on basic elements of Spintronics are discussed here, such as – Spin Polarization, Spin Filter Effect, Spin Generation and Injection, Spin Accumulation, Different kinds of Spin Relaxation Phenomena, Spin Valve, Spin Extraction, Spin Hall Effect, Spin Seebeck Effect, Spin Current Measurement Mechanism, Magnetoresistance and its different kinds etc. Concept of Giant Magnetoresistance (GMR), different types of GMR, qualitative and quantitative explanation of GMR employing Resistor Network Theory are presented here. Tunnelling Magnetoresistance (TMR), Magnetic Junctions, Effect of various parameters on TMR, Measurement of spin relaxation length and time in the spacer layer are covered here. This book highlights the concept of Spin Transfer Torque (STT), STT in Ferromagnetic Layer Structures, STT driven Magnetization Dynamics, STT in Magnetic Multilayer Nanopillar etc. This book also sheds light on Magnetic Domain Wall (MDW) Motion, Ratchet Effect in MDW motion, MDW motion velocity measurements, Current-driven MDW motion, etc. The book deals with the emerging field of spintronics, i.e., Opto-spintronics. Special emphasis is given on ultrafast optical controlling of magnetic states of antiferromagnet, Spin-photon interaction, Faraday Effect, Inverse Faraday Effect and outline of different all-optical spintronic switching. One more promising branch i.e., Terahertz Spintronics is also covered. Principle of operation of spintronic terahertz emitter, choice of materials, terahertz writing of an antiferromagnetic magnetic memory device is discussed. Brief introduction of Semiconductor spintronics is presented that includes dilute magnetic semiconductor, feromagnetic semiconductor, spin polarized semiconductor devices, three terminal spintronic devices, Spin transistor, Spin-LED, and Spin-Laser. This book also emphasizes on several modern spintronics devices that includes GMR Read Head of Modern Hard Disk Drive, MRAM, Position Sensor, Biosensor, Magnetic Field sensor, Three Terminal Magnetic Memory Devices, Spin FET, Race Track Memory and Quantum Computing.

Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 797
Release: 2016-04-19
Genre: Science
ISBN: 1439803781

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal