Physical Properties of Materials, Third Edition

Physical Properties of Materials, Third Edition
Author: Mary Anne White
Publisher: CRC Press
Total Pages: 496
Release: 2018-10-12
Genre: Science
ISBN: 0429887116

Designed for advanced undergraduate students and as a useful reference book for materials researchers, Physical Properties of Materials, Third Edition establishes the principles that control the optical, thermal, electronic, magnetic, and mechanical properties of materials. Using an atomic and molecular approach, this introduction to materials science offers readers a wide-ranging survey of the field and a basis to understand future materials. The author incorporates comments on applications of materials science, extensive references to the contemporary and classic literature, and 350 end-of-chapter problems. In addition, unique tutorials allow students to apply the principles to understand applications, such as photocopying, magnetic devices, fiber optics, and more. This fully revised and updated Third Edition includes new materials and processes, such as topological insulators, 3-D printing, and more information on nanomaterials. The new edition also now adds Learning Goals at the end of each chapter and a Glossary with more than 500 entries for quick reference.

Physical Properties of Materials

Physical Properties of Materials
Author: M. C. Lovell
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2012-12-06
Genre: Science
ISBN: 9401160651

Materials Science has now become established as a discipline in its own right as well as being of increasing importance in the fields of Physics, Chemistry and Engineering. To the student meeting this subject for the first time the combination of disciplines which it embraces represents a formidable challenge. He will require to understand the lan guage of the physicist and chemist as well as appreciate the practical uses and limita tions of solid materials. This book has been written as an introduction to the Physical Properties of Materials with these thoughts in mind. The mathematical content has been limited deliberately and emphasis is placed on providing a sound basis using simplified models. Once these are understood we feel that a mathematical approach is more readily assimilated and for this purpose supplementary reading is suggested. While the authors are deeply aware of the pitfalls in attempting such a treatment this is meant to be an essentially simple book to point the many avenues to be explored. We anticipate that the book will appeal to first and second year degree students in a variety of disciplines and may not prove too difficult for those studying appropriate Higher National Certificate and Diploma courses. Electrical engineers working in the field of materials applications may well find it useful as a guide to modern thinking about materials and their properties. The book begins with an introduction to some basic ideas of modern physics.

Properties of Materials

Properties of Materials
Author: Mary Anne White
Publisher: Oxford University Press, USA
Total Pages: 334
Release: 1999
Genre: Science
ISBN: 9780195113310

Ideal for a variety of courses in materials science, Properties of Materials offers students a wide-ranging and introductory survey of this exciting field. It uses an atomic and molecular approach to introduce the basic principles of materials science from the perspective of various properties--optical, thermal, electrical, magnetic, and mechanical--highlighting the relationships among the properties. Opening with a general introduction to issues in materials science, the text goes on to discuss various types of matter: metals, semiconductors (intrinsic and extrinsic), insulators, glasses, orientationally disordered crystals, defective solids, liquid crystals, Fullerenes, Langmuir-Blodgett films, colloids, inclusion compounds, and more. The volume incorporates several pedagogical features including extensive further reading suggestions and problems at the end of each chapter, comment sections on applications of materials science, comprehensive biographical notes on major contributors to the field, and a helpful website that updates recent references to the contemporary literature. In addition, the book includes unique tutorials that enable students to apply the principles they have learned in order to work out the physical principles behind such important advances as the photocopy process, photography, fiber optics, heat storage materials, magnetic devices, and more.

Properties of Materials

Properties of Materials
Author: Robert E. Newnham
Publisher: Oxford University Press
Total Pages: 391
Release: 2005
Genre: Science
ISBN: 0198520751

Crystals are sometimes called 'Flowers of the Mineral Kingdom'. In addition to their great beauty, crystals and other textured materials are enormously useful in electronics, optics, acoustics and many other engineering applications. This richly illustrated text describes the underlying principles of crystal physics and chemistry, covering a wide range of topics and illustrating numerous applications in many fields of engineering using the most important materials today. Tensors, matrices, symmetry and structure-property relationships form the main subjects of the book. While tensors and matrices provide the mathematical framework for understanding anisotropy, on which the physical and chemical properties of crystals and textured materials often depend, atomistic arguments are also needed to quantify the property coefficients in various directions. The atomistic arguments are partly based on symmetry and partly on the basic physics and chemistry of materials. After introducing the point groups appropriate for single crystals, textured materials and ordered magnetic structures, the directional properties of many different materials are described: linear and nonlinear elasticity, piezoelectricity and electrostriction, magnetic phenomena, diffusion and other transport properties, and both primary and secondary ferroic behavior. With crystal optics (its roots in classical mineralogy) having become an important component of the information age, nonlinear optics is described along with the piexo-optics, magneto-optics, and analogous linear and nonlinear acoustic wave phenomena. Enantiomorphism, optical activity, and chemical anisotropy are discussed in the final chapters of the book.

Physical Properties and Data of Optical Materials

Physical Properties and Data of Optical Materials
Author: Moriaki Wakaki
Publisher: CRC Press
Total Pages: 576
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 1420015508

Research and applications in optical engineering require careful selection of materials. With such a large and varied array to choose from, it is important to understand a material's physical and optical properties before making a selection. Providing a convenient, concise, and logically organized collection of information, Physical Properties and Data of Optical Materials builds a thorough background for more than 100 optical materials and offers quick access to precise information. Surveying the most important and widely used optical materials, this handy reference includes data on a wide variety of metals, semiconductors, dielectrics, polymers, and other commonly used optical materials. For each material, the editors examine the crystal system; natural and artificial growth and production methods along with corrosives and processing; thermal, electrical, and mechanical properties; optical properties, such as transmittance and reflectance spectra, ranging from UV to IR wavelengths; and, where applicable, applications for spectroscopy and miscellaneous remarks such as handling concerns and chemical properties. Numerous tables illustrate important data such as numerical values of optical constants for important wavelength regions, extinction and absorption coefficients, and refractive index. Physical Properties and Data of Optical Materials offers a collection of data on an unprecedented variety of fundamental optical materials, making it the one quick-lookup guide that every optical scientist, engineer, and student should own.

Physical Properties of Amorphous Materials

Physical Properties of Amorphous Materials
Author: David Adler
Publisher: Springer Science & Business Media
Total Pages: 448
Release: 2013-06-29
Genre: Science
ISBN: 1489922601

The Institute for Amorphous Studies was founded in 1982 as the international center for the investigation of amorphous mate rials. It has since played an important role in promoting the und er standing of disordered matter in general. An Institute lecture series on "Fundamentals of Amorphous Materials and Devices" was held during 1982-83 with distinguished speakers from universities and industry. These events were free and open to the public ,and were attended by many representatives of the scientific community. The lectures themselves were highly successful inasmuch as they provided not only formal instruction but also an opportunity for vigorous and stimulating debate. That last element could not be captured within the pages of a book I but the lectures concentrated on the latest advances in the field I which is why their essential contents are he re reproduced in collective form. Together they constitute an interdisciplinary status report of the field. The speakers brought many different viewpoints and a variety of back ground experiences io bear on the problems involved I but though language and conventions vary I the essential unity of the concerns is very clear I as indeed are the ultimate benefits of the many-sided approach.

The Properties of Energetic Materials

The Properties of Energetic Materials
Author: Mohammad Hossein Keshavarz
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 208
Release: 2017-11-20
Genre: Technology & Engineering
ISBN: 3110521881

For a chemist who is concerned with the synthesis of new energetic compounds, it is essential to be able to assess physical and thermodynamic properties, as well as the sensitivity, of possible new energetic compounds before synthesis is attempted. Various approaches have been developed to predict important aspects of the physical and thermodynamic properties of energetic materials including (but not limited to): crystal density, heat of formation, melting point, enthalpy of fusion and enthalpy of sublimation of an organic energetic compound. Since an organic energetic material consists of metastable molecules capable of undergoing very rapid and highly exothermic reactions, many methods have been developed to estimate the sensitivity of an energetic compound with respect to detonationcausing external stimuli such as heat, friction, impact, shock and electrostatic discharge. This book introduces these methods and demonstrates those methods which can be easily applied.

Physical Properties of Crystals

Physical Properties of Crystals
Author: J. F. Nye
Publisher: Oxford University Press
Total Pages: 356
Release: 1985
Genre: Mathematics
ISBN: 9780198511656

First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

Physical Properties and Applications of Polymer Nanocomposites

Physical Properties and Applications of Polymer Nanocomposites
Author: S C Tjong
Publisher: Elsevier
Total Pages: 943
Release: 2010-10-29
Genre: Technology & Engineering
ISBN: 0857090240

Polymer nanocomposites are polymer matrices reinforced with nano-scale fillers. This new class of composite materials has shown improved mechanical and physical properties. The latter include enhanced optical, electrical and dielectric properties. This important book begins by examining the characteristics of the main types of polymer nanocomposites, then reviews their diverse applications.Part one focuses on polymer/nanoparticle composites, their synthesis, optical properties and electrical conductivity. Part two describes the electrical, dielectric and thermal behaviour of polymer/nanoplatelet composites, whilst polymer/nanotube composites are the subject of Part three. The processing and industrial applications of these nanocomposite materials are discussed in Part four, including uses in fuel cells, bioimaging and sensors as well as the manufacture and applications of electrospun polymer nanocomposite fibers, nanostructured transition metal oxides, clay nanofiller/epoxy nanocomposites, hybrid epoxy-silica-rubber nanocomposites and other rubber-based nanocomposites.Polymer nanocomposites: Physical properties and applications is a valuable reference tool for both the research community and industry professionals wanting to learn about the these materials and their applications in such areas as fuel cell, sensor and biomedical technology. - Examines the characteristics of the main types of polymer nanocomposites and reviews their diverse applications - Comprehensively assesses polymer/nanoparticle composites exploring experimental techniques and data associated with the conductivity and dielectric characterization - A specific section on polymer/nanotube composites features electrical and dielectric behaviour of polymer/carbon nanotube composites