Plastic Design of Frames 1 Fundamentals

Plastic Design of Frames 1 Fundamentals
Author: J. Baker
Publisher: Cambridge University Press
Total Pages: 244
Release: 1969-06-02
Genre: Technology & Engineering
ISBN: 9780521075176

When this volume was first published, plastic theory was the most modern method of structural analysis, and it made possible the direct design of steel frames in a way not available with only elastic methods. It is now recognized that this theory is also fundamental to structural design in materials such as reinforced concrete and aluminium. This is the first volume of a two-volume work by Professors Baker and Heyman that expounds and illustrates the methods of plastic design. Volume 1 gives the elements of the theory and covers the needs of most undergraduates and designers. A special feature of this work is the large number of exercises (140 in all) with answers. Volume 2 deals with advanced topics of theoretical analysis and practical design. The examples and the methods presented herein are extremely valuable to the engineer. The quality of the writing makes Professors Baker and Heyman's book a pleasure to read. Lord Baker (Sir John Fleetwood Baker, 1901-1985) was Professor of Mechanical Sciences and Head of the Department of Engineering at the University of Cambridge from 1943 to 1968. He was a Fellow of the Royal Society. Baker's pioneering research led to the development of the plastic theory of design, originally used for steel frames but now recognized as being valid for many structural materials, such as aluminium and reinforced concrete. Additionally, Baker was responsible for many curriculum innovations at the university and was the author of The Steel Skeleton, a two-volume work. Jacques Heyman is the former Head of the Department of Engineering at the University of Cambridge and the author of ten books, including The Stone Skeleton, Elements of the Theory of Structures, Structural Analysis: A Historical Approach, Elements of Stress Analysis, and the two-volume set Plastic Design of Frames: Volume 1. Fundamentals with Lord Baker and Volume 2. Applications. He is a Fellow of the Society of Antiquaries, the Institution of Civil Engineers, and the Royal Academy of Engineering. He acted as a consulting engineer for a number of English cathedrals and as a member of the Architectural Advisory Panel for Westminster Abbey and of the Cathedrals Fabric Commission for England, and he has served on many British standards committees. The Stone Skeleton won the Choice Outstanding Academic Books Award in 1996.

Plastic Design of Frames 1 Fundamentals

Plastic Design of Frames 1 Fundamentals
Author: J. Baker
Publisher: Cambridge University Press
Total Pages: 235
Release: 1969-06-02
Genre: Technology & Engineering
ISBN: 9780521075176

When this volume was first published, plastic theory was the most modern method of structural analysis, and it made possible the direct design of steel frames in a way not available with only elastic methods. It is now recognized that this theory is also fundamental to structural design in materials such as reinforced concrete and aluminium. This is the first volume of a two-volume work by Professors Baker and Heyman that expounds and illustrates the methods of plastic design. Volume 1 gives the elements of the theory and covers the needs of most undergraduates and designers. A special feature of this work is the large number of exercises (140 in all) with answers. Volume 2 deals with advanced topics of theoretical analysis and practical design. The examples and the methods presented herein are extremely valuable to the engineer. The quality of the writing makes Professors Baker and Heyman's book a pleasure to read. Lord Baker (Sir John Fleetwood Baker, 1901-1985) was Professor of Mechanical Sciences and Head of the Department of Engineering at the University of Cambridge from 1943 to 1968. He was a Fellow of the Royal Society. Baker's pioneering research led to the development of the plastic theory of design, originally used for steel frames but now recognized as being valid for many structural materials, such as aluminium and reinforced concrete. Additionally, Baker was responsible for many curriculum innovations at the university and was the author of The Steel Skeleton, a two-volume work. Jacques Heyman is the former Head of the Department of Engineering at the University of Cambridge and the author of ten books, including The Stone Skeleton, Elements of the Theory of Structures, Structural Analysis: A Historical Approach, Elements of Stress Analysis, and the two-volume set Plastic Design of Frames: Volume 1. Fundamentals with Lord Baker and Volume 2. Applications. He is a Fellow of the Society of Antiquaries, the Institution of Civil Engineers, and the Royal Academy of Engineering. He acted as a consulting engineer for a number of English cathedrals and as a member of the Architectural Advisory Panel for Westminster Abbey and of the Cathedrals Fabric Commission for England, and he has served on many British standards committees. The Stone Skeleton won the Choice Outstanding Academic Books Award in 1996.

Plastic Design and Second-Order Analysis of Steel Frames

Plastic Design and Second-Order Analysis of Steel Frames
Author: W.F. Chen
Publisher: Springer
Total Pages: 519
Release: 2013-12-20
Genre: Technology & Engineering
ISBN: 1461384281

Plastic Design of Steel Frames assesses the current status and future direction of computer-based analyses of inelastic strength and stability for direct frame design. It shows how design rules are used in practical frame design and provides an introduction to the second-order theory of inelastic frame design. The book includes two computer programs on a diskette: one for the first-order analyses and the other for the second-order plastic hinge analysis of planar frame design. The second-order program can be used to predict realistic strengths and stabilities of planar frames, thereby eliminating the tedious task of estimating factors for individual member capacity checks. Both programs include clear input instructions. The diskette also contains the Fortran source-code listing for the second-order plastic-hinge analysis, enabling the user to customize the program. The programs will run on an IBM PC-AT or equivalent machine with 640 kB of memory and 30 MB hard drive.

Soil Mechanics

Soil Mechanics
Author: William Powrie
Publisher: CRC Press
Total Pages: 676
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 1466552484

Instead of fixating on formulae, Soil Mechanics: Concepts and Applications, Third Edition focuses on the fundamentals. This book describes the mechanical behaviour of soils as it relates to the practice of geotechnical engineering. It covers both principles and design, avoids complex mathematics whenever possible, and uses simple methods and ideas to build a framework to support and accommodate more complex problems and analysis. The third edition includes new material on site investigation, stress-dilatancy, cyclic loading, non-linear soil behaviour, unsaturated soils, pile stabilization of slopes, soil/wall stiffness and shallow foundations. Other key features of the Third Edition: • Makes extensive reference to real case studies to illustrate the concepts described • Focuses on modern soil mechanics principles, informed by relevant research • Presents more than 60 worked examples • Provides learning objectives, key points, and self-assessment and learning questions for each chapter • Includes an accompanying solutions manual for lecturers This book serves as a resource for undergraduates in civil engineering and as a reference for practising geotechnical engineers.

The Thermomechanics of Plasticity and Fracture

The Thermomechanics of Plasticity and Fracture
Author: Gérard A. Maugin
Publisher: Cambridge University Press
Total Pages: 376
Release: 1992-05-21
Genre: Mathematics
ISBN: 9780521397803

This book concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, presented in the thermomechanical framework.

Geotechnical Modelling

Geotechnical Modelling
Author: David Muir Wood
Publisher: CRC Press
Total Pages: 499
Release: 2017-12-21
Genre: Science
ISBN: 1482288311

Modelling forms an implicit part of all engineering design but many engineers engage in modelling without consciously considering the nature, validity and consequences of the supporting assumptions. Derived from courses given to postgraduate and final year undergraduate MEng students, this book presents some of the models that form a part of the typical undergraduate geotechnical curriculum and describes some of the aspects of soil behaviour which contribute to the challenge of geotechnical modelling. Assuming a familiarity with basic soil mechanics and traditional methods of geotechnical design, this book is a valuable tool for students of geotechnical and structural and civil engineering as well as also being useful to practising engineers involved in the specification of numerical or physical geotechnical modelling.

Elements of the Theory of Structures

Elements of the Theory of Structures
Author: Jacques Heyman
Publisher: Cambridge University Press
Total Pages: 151
Release: 1996-06-13
Genre: Mathematics
ISBN: 0521550653

A good grasp of the theory of structures - the theoretical basis by which the strength, stiffness and stability of a building can be understood - is fundamental to structural engineers and architects. Yet most modern structural analysis and design is carried out by computer, with the user isolated from the processes in action. This book provides a broad introduction to the mathematics behind a range of structural processes. The basic structural equations have been known for at least 150 years, but modern plastic theory has opened up a fundamentally new way of advancing structural theory. Paradoxically, the powerful plastic theorems can be used to examine 'classic' elastic design activity, and strong mathematical relationships exist between these two approaches. Some of the techniques used in this book may be familiar to the reader, and some may not, but each of the topics examined will give the structural engineer valuable insight into the basis of the subject. This lucid volume provides a valuable read for structural engineers and others who wish to deepen their knowledge of the structural analysis and design of buildings.

Soil Behaviour and Critical State Soil Mechanics

Soil Behaviour and Critical State Soil Mechanics
Author: David Muir Wood
Publisher: Cambridge University Press
Total Pages: 492
Release: 1991-04-26
Genre: Technology & Engineering
ISBN: 1316224236

Soils can rarely be described as ideally elastic or perfectly plastic and yet simple elastic and plastic models form the basis for the most traditional geotechnical engineering calculations. With the advent of cheap powerful computers the possibility of performing analyses based on more realistic models has become widely available. One of the aims of this book is to describe the basic ingredients of a family of simple elastic-plastic models of soil behaviour and to demonstrate how such models can be used in numerical analyses. Such numerical analyses are often regarded as mysterious black boxes but a proper appreciation of their worth requires an understanding of the numerical models on which they are based. Though the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.