Polygon Mesh Processing

Polygon Mesh Processing
Author: Mario Botsch
Publisher: CRC Press
Total Pages: 244
Release: 2010-10-07
Genre: Computers
ISBN: 1568814267

Geometry processing, or mesh processing, is a fast-growing area of research that uses concepts from applied mathematics, computer science, and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation, and transmission of complex 3D models. Applications of geometry processing algorithms already cover a wide range of areas from multimedia, entertainment, and classical computer-aided design, to biomedical computing, reverse engineering, and scientific computing. Over the last several years, triangle meshes have become increasingly popular, as irregular triangle meshes have developed into a valuable alternative to traditional spline surfaces. This book discusses the whole geometry processing pipeline based on triangle meshes. The pipeline starts with data input, for example, a model acquired by 3D scanning techniques. This data can then go through processes of error removal, mesh creation, smoothing, conversion, morphing, and more. The authors detail techniques for those processes using triangle meshes. A supplemental website contains downloads and additional information.

Point-Based Graphics

Point-Based Graphics
Author: Markus Gross
Publisher: Elsevier
Total Pages: 553
Release: 2011-05-04
Genre: Computers
ISBN: 0080548822

The polygon-mesh approach to 3D modeling was a huge advance, but today its limitations are clear. Longer render times for increasingly complex images effectively cap image complexity, or else stretch budgets and schedules to the breaking point. Comprised of contributions from leaders in the development and application of this technology, Point-Based Graphics examines it from all angles, beginning with the way in which the latest photographic and scanning devices have enabled modeling based on true geometry, rather than appearance. From there, it's on to the methods themselves. Even though point-based graphics is in its infancy, practitioners have already established many effective, economical techniques for achieving all the major effects associated with traditional 3D Modeling and rendering. You'll learn to apply these techniques, and you'll also learn how to create your own. The final chapter demonstrates how to do this using Pointshop3D, an open-source tool for developing new point-based algorithms. - The first book on a major development in computer graphics by the pioneers in the field - Shows how 3D images can be manipulated as easily as 2D images are with Photoshop

Brain and Human Body Modeling

Brain and Human Body Modeling
Author: Sergey Makarov
Publisher: Springer Nature
Total Pages: 398
Release: 2019-08-27
Genre: Technology & Engineering
ISBN: 3030212939

This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.

Level of Detail for 3D Graphics

Level of Detail for 3D Graphics
Author: David Luebke
Publisher: Morgan Kaufmann
Total Pages: 432
Release: 2003
Genre: Computers
ISBN: 1558608389

Preface -- Foreword -- Part I: Generation -- 1. Introduction -- 2. Mesh Simplification -- 3. Error Metrics -- Part II: Application -- 4. Runtime Frameworks -- 5. Catalog of Useful Algorithms -- 6. Gaming Optimizations -- 7. Terrain Level of Detail -- Part III: Advanced Issues -- 8. Perceptual Issues -- 9. Measuring Visual Fidelity -- 10. Temporal LOD -- Glossary -- BibliographyMesh simplification -- Simplification error metrics -- Run-time frameworks -- A catalog of useful algorithms -- Gaming optimizations -- Terrain level of detail -- Perceptual issues -- Measuring visual fidelity -- Temporal detail.

Essential Mathematics for Games and Interactive Applications

Essential Mathematics for Games and Interactive Applications
Author: James M. Van Verth
Publisher: CRC Press
Total Pages: 706
Release: 2008-05-19
Genre: Art
ISBN: 0123742978

Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.

Tutorials on Multiresolution in Geometric Modelling

Tutorials on Multiresolution in Geometric Modelling
Author: Armin Iske
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2002-06-12
Genre: Mathematics
ISBN: 9783540436393

This is the only textbook available on multiresolution methods in geometric modeling, a central topic in visualization, which is of great importance for industrial applications. Written in tutorial form, the book is introductory in character, and includes supporting exercises. Other supplementary material and software can be downloaded from the website www.ma.tum.de/primus 2001/.

Isosurfaces

Isosurfaces
Author: Rephael Wenger
Publisher: CRC Press
Total Pages: 484
Release: 2013-06-24
Genre: Computers
ISBN: 1466571020

Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data. Yet there is no book exclusively devoted to isosurfaces. Isosurfaces: Geometry, Topology, and Algorithms represents the first book to focus on basic algorithms for isosurface co

Three-Dimensional Model Analysis and Processing

Three-Dimensional Model Analysis and Processing
Author: Faxin Yu
Publisher: Springer Science & Business Media
Total Pages: 434
Release: 2011-02-03
Genre: Computers
ISBN: 3642126510

With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works from being pirated and tampered with; (3) How to search for the desired 3D models in huge multimedia databases. This book is devoted to partially solving the above issues. Compression is useful because it helps reduce the consumption of expensive resources, such as hard disk space and transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. 3D polygonal mesh (with geometry, color, normal vector and texture coordinate information), as a common surface representation, is now heavily used in various multimedia applications such as computer games, animations and simulation applications. To maintain a convincing level of realism, many applications require highly detailed mesh models. However, such complex models demand broad network bandwidth and much storage capacity to transmit and store. To address these problems, 3D mesh compression is essential for reducing the size of 3D model representation.

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes
Author: Andrea Cangiani
Publisher: Springer
Total Pages: 133
Release: 2017-11-27
Genre: Mathematics
ISBN: 3319676733

Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.