Predicting Structured Data

Predicting Structured Data
Author: Neural Information Processing Systems Foundation
Publisher: MIT Press
Total Pages: 361
Release: 2007
Genre: Algorithms
ISBN: 0262026171

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

Deep Learning with Structured Data

Deep Learning with Structured Data
Author: Mark Ryan
Publisher: Simon and Schuster
Total Pages: 262
Release: 2020-12-08
Genre: Computers
ISBN: 163835717X

Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Summary Deep learning offers the potential to identify complex patterns and relationships hidden in data of all sorts. Deep Learning with Structured Data shows you how to apply powerful deep learning analysis techniques to the kind of structured, tabular data you'll find in the relational databases that real-world businesses depend on. Filled with practical, relevant applications, this book teaches you how deep learning can augment your existing machine learning and business intelligence systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Here’s a dirty secret: Half of the time in most data science projects is spent cleaning and preparing data. But there’s a better way: Deep learning techniques optimized for tabular data and relational databases deliver insights and analysis without requiring intense feature engineering. Learn the skills to unlock deep learning performance with much less data filtering, validating, and scrubbing. About the book Deep Learning with Structured Data teaches you powerful data analysis techniques for tabular data and relational databases. Get started using a dataset based on the Toronto transit system. As you work through the book, you’ll learn how easy it is to set up tabular data for deep learning, while solving crucial production concerns like deployment and performance monitoring. What's inside When and where to use deep learning The architecture of a Keras deep learning model Training, deploying, and maintaining models Measuring performance About the reader For readers with intermediate Python and machine learning skills. About the author Mark Ryan is a Data Science Manager at Intact Insurance. He holds a Master's degree in Computer Science from the University of Toronto. Table of Contents 1 Why deep learning with structured data? 2 Introduction to the example problem and Pandas dataframes 3 Preparing the data, part 1: Exploring and cleansing the data 4 Preparing the data, part 2: Transforming the data 5 Preparing and building the model 6 Training the model and running experiments 7 More experiments with the trained model 8 Deploying the model 9 Recommended next steps

Advanced Structured Prediction

Advanced Structured Prediction
Author: Sebastian Nowozin
Publisher: MIT Press
Total Pages: 430
Release: 2014-12-05
Genre: Computers
ISBN: 0262028379

An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs. The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný

Linguistic Structure Prediction

Linguistic Structure Prediction
Author: Noah A. Smith
Publisher: Springer Nature
Total Pages: 248
Release: 2022-05-31
Genre: Computers
ISBN: 3031021436

A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference

Pattern Recognition in Bioinformatics

Pattern Recognition in Bioinformatics
Author: Tjeerd M.H. Dijkstra
Publisher: Springer Science & Business Media
Total Pages: 458
Release: 2010-09-20
Genre: Science
ISBN: 364216000X

This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition in Bioinformatics, PRIB 2010, held in Nijmegen, The Netherlands, in September 2010. The 38 revised full papers presented were carefully reviewed and selected from 46 submissions. The field of bioinformatics has two main objectives: the creation and maintenance of biological databases and the analysis of life sciences data in order to unravel the mysteries of biological function. Computer science methods such as pattern recognition, machine learning, and data mining have a great deal to offer the field of bioinformatics.

MEDINFO 2019: Health and Wellbeing e-Networks for All

MEDINFO 2019: Health and Wellbeing e-Networks for All
Author: L. Ohno-Machado
Publisher: IOS Press
Total Pages: 2078
Release: 2019-11-12
Genre: Medical
ISBN: 164368003X

Combining and integrating cross-institutional data remains a challenge for both researchers and those involved in patient care. Patient-generated data can contribute precious information to healthcare professionals by enabling monitoring under normal life conditions and also helping patients play a more active role in their own care. This book presents the proceedings of MEDINFO 2019, the 17th World Congress on Medical and Health Informatics, held in Lyon, France, from 25 to 30 August 2019. The theme of this year’s conference was ‘Health and Wellbeing: E-Networks for All’, stressing the increasing importance of networks in healthcare on the one hand, and the patient-centered perspective on the other. Over 1100 manuscripts were submitted to the conference and, after a thorough review process by at least three reviewers and assessment by a scientific program committee member, 285 papers and 296 posters were accepted, together with 47 podium abstracts, 7 demonstrations, 45 panels, 21 workshops and 9 tutorials. All accepted paper and poster contributions are included in these proceedings. The papers are grouped under four thematic tracks: interpreting health and biomedical data, supporting care delivery, enabling precision medicine and public health, and the human element in medical informatics. The posters are divided into the same four groups. The book presents an overview of state-of-the-art informatics projects from multiple regions of the world; it will be of interest to anyone working in the field of medical informatics.

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing
Author: Le Lu
Publisher: Springer
Total Pages: 327
Release: 2017-07-12
Genre: Computers
ISBN: 331942999X

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Intelligent Computing

Intelligent Computing
Author: Kohei Arai
Publisher: Springer Nature
Total Pages: 728
Release: 2020-07-03
Genre: Technology & Engineering
ISBN: 3030522466

This book focuses on the core areas of computing and their applications in the real world. Presenting papers from the Computing Conference 2020 covers a diverse range of research areas, describing various detailed techniques that have been developed and implemented. The Computing Conference 2020, which provided a venue for academic and industry practitioners to share new ideas and development experiences, attracted a total of 514 submissions from pioneering academic researchers, scientists, industrial engineers and students from around the globe. Following a double-blind, peer-review process, 160 papers (including 15 poster papers) were selected to be included in these proceedings. Featuring state-of-the-art intelligent methods and techniques for solving real-world problems, the book is a valuable resource and will inspire further research and technological improvements in this important area.