Quantum Information Processing with Finite Resources

Quantum Information Processing with Finite Resources
Author: Marco Tomamichel
Publisher: Springer
Total Pages: 146
Release: 2015-10-14
Genre: Science
ISBN: 3319218913

This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigations possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required.

Quantum Information Processing

Quantum Information Processing
Author: Thomas Beth
Publisher: John Wiley & Sons
Total Pages: 471
Release: 2006-03-06
Genre: Science
ISBN: 3527606084

Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) realized a focused research program on quantum information. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publisher: Academic Press
Total Pages: 597
Release: 2012-04-16
Genre: Computers
ISBN: 0123854911

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

The Theory of Quantum Information

The Theory of Quantum Information
Author: John Watrous
Publisher:
Total Pages: 599
Release: 2018-04-26
Genre: Computers
ISBN: 1107180562

Formal development of the mathematical theory of quantum information with clear proofs and exercises. For graduate students and researchers.

Device-Independent Quantum Information Processing

Device-Independent Quantum Information Processing
Author: Rotem Arnon-Friedman
Publisher: Springer Nature
Total Pages: 223
Release: 2020-10-31
Genre: Science
ISBN: 3030602311

Device-independent quantum cryptography is a method for exchanging secret messages over potentially insecure quantum communication channels, such as optical fibers. In contrast to conventional quantum cryptography, security is guaranteed even if the devices used by the communication partners, such as photon sources and detectors, deviate from their theoretical specifications. This is of high practical relevance, for attacks to current implementations of quantum cryptography exploit exactly such deviations. Device-independent cryptography is however technologically so demanding that it looked as if experimental realizations are out of reach. In her thesis, Rotem Arnon-Friedman presents powerful information-theoretic methods to prove the security of device-independent quantum cryptography. Based on them, she is able to establish security in a parameter regime that may be experimentally achievable in the near future. Rotem Arnon-Friedman's thesis thus provides the theoretical foundations for an experimental demonstration of device-independent quantum cryptography.

Quantum Information Theory

Quantum Information Theory
Author: Mark Wilde
Publisher: Cambridge University Press
Total Pages: 673
Release: 2013-04-18
Genre: Computers
ISBN: 1107034256

A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.

Quantum Information Processing

Quantum Information Processing
Author: Gerd Leuchs
Publisher: Wiley-VCH
Total Pages: 362
Release: 2003-04-09
Genre: Computers
ISBN:

The possible realization of quantum computers within the next two decades could cause a revolution in data processing and cryptography. Here, leading experts in the field of quantum information technology summarize recent developments by way of a cross-disciplinary link between different technical and theoretical approaches.

Thermodynamics in the Quantum Regime

Thermodynamics in the Quantum Regime
Author: Felix Binder
Publisher: Springer
Total Pages: 985
Release: 2019-04-01
Genre: Science
ISBN: 3319990462

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.

Quantum Information Theory

Quantum Information Theory
Author: Mark M. Wilde
Publisher: Cambridge University Press
Total Pages: 1020
Release: 2017-02-06
Genre: Computers
ISBN: 1316813304

Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.