Real-world Data Mining

Real-world Data Mining
Author: Dursun Delen
Publisher: Pearson Education
Total Pages: 289
Release: 2015
Genre: Business & Economics
ISBN: 0133551075

As business becomes increasingly complex and global, decision-makers must act more rapidly and accurately, based on the best available evidence. Modern data mining and analytics is indispensable for doing this. Real-World Data Mining demystifies current best practices, showing how to use data mining and analytics to uncover hidden patterns and correlations, and leverage these to improve all business decision-making. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, Delen provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: data mining processes, methods, and techniques; the role and management of data; tools and metrics; text and web mining; sentiment analysis; and integration with cutting-edge Big Data approaches. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials.

Data Mining Solutions

Data Mining Solutions
Author: Christopher Westphal
Publisher:
Total Pages: 648
Release: 1998-08-10
Genre: Computers
ISBN:

Cutting-edge data mining techniques and tools for solving your toughest analytical problems Data Mining Solutions In down-to-earth language, data mining experts Christopher Westphal and Teresa Blaxton introduce a brand new approach to data mining analysis. Through their extensive real-world experience, they have developed and documented many practical and proven techniques to make your own data mining efforts more successful. You'll get a refreshing "out-of-the-box" approach to data mining that will help you maximize your time and problem-solving resources, and prepare for the next wave of data mining-visualization. You will read about ways in which data mining has been used to: * Discover patterns of insider trading in the stock market * Evaluate the utility of marketing campaigns * Analyze retail sales patterns across geographic regions * Identify money laundering operations * Target DNA sequences for pharmaceutical testing and development The book is accompanied by a CD-ROM that contains: * Demo and trial versions of numerous visual data mining tools * Active web-page links for each of the products profiled * GIF files corresponding to all book images

Data Mining Applications with R

Data Mining Applications with R
Author: Yanchang Zhao
Publisher: Academic Press
Total Pages: 493
Release: 2013-11-26
Genre: Computers
ISBN: 0124115209

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Practical Applications of Data Mining

Practical Applications of Data Mining
Author: Sang Suh
Publisher: Jones & Bartlett Publishers
Total Pages: 436
Release: 2012
Genre: Computers
ISBN: 0763785873

Introduction to data mining -- Association rules -- Classification learning -- Statistics for data mining -- Rough sets and bayes theories -- Neural networks -- Clustering -- Fuzzy information retrieval.

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Morgan Kaufmann
Total Pages: 414
Release: 2000
Genre: Computers
ISBN: 9781558605527

This book offers a thorough grounding in machine learning concepts combined with practical advice on applying machine learning tools and techniques in real-world data mining situations. Clearly written and effectively illustrated, this book is ideal for anyone involved at any level in the work of extracting usable knowledge from large collections of data. Complementing the book's instruction is fully functional machine learning software.

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Elsevier
Total Pages: 665
Release: 2011-02-03
Genre: Computers
ISBN: 0080890369

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining with R

Data Mining with R
Author: Luis Torgo
Publisher: CRC Press
Total Pages: 426
Release: 2016-11-30
Genre: Business & Economics
ISBN: 1315399091

Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Domain Driven Data Mining

Domain Driven Data Mining
Author: Longbing Cao
Publisher: Springer Science & Business Media
Total Pages: 251
Release: 2010-01-08
Genre: Computers
ISBN: 1441957375

This book offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery. It bridges the gap between business expectations and research output.

Business Modeling and Data Mining

Business Modeling and Data Mining
Author: Dorian Pyle
Publisher: Elsevier
Total Pages: 721
Release: 2003-05-17
Genre: Computers
ISBN: 0080500455

Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations· Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations· Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data· Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.