Resilience Engineering for Power and Communications Systems

Resilience Engineering for Power and Communications Systems
Author: Alexis Kwasinski
Publisher: Cambridge University Press
Total Pages: 509
Release: 2023-12-31
Genre: Science
ISBN: 1108491804

Discover how and why power and communication networks fail in disasters, and explore strategies and technologies to stop future failures.

Communications, Cyber Resilience, and the Future of the U.S. Electric Power System

Communications, Cyber Resilience, and the Future of the U.S. Electric Power System
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 75
Release: 2020-07-14
Genre: Science
ISBN: 0309676835

Electric power is a critical infrastructure that is vital to the U.S. economy and national security. Today, the nation's electric power infrastructure is threatened by malicious attacks, accidents, and failures, as well as disruptive natural events. As the electric grid evolves and becomes increasingly interdependent with other critical infrastructures, the nation is challenged to defend against these threats and to advance grid capabilities with reliable defenses. On November 1, 2019, the National Academies of Sciences, Engineering, and Medicine convened a workshop to gather diverse perspectives on current and future threats to the electric power system, activities that the subsector is pursuing to defend itself, and how this work may evolve over the coming decades. This publications summarizes the presentations and discussions from the workshop.

Enhancing the Resilience of the Nation's Electricity System

Enhancing the Resilience of the Nation's Electricity System
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 171
Release: 2017-10-25
Genre: Science
ISBN: 0309463076

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.

Resilience Engineering

Resilience Engineering
Author: Professor David D Woods
Publisher: Ashgate Publishing, Ltd.
Total Pages: 511
Release: 2012-10-01
Genre: Transportation
ISBN: 1409463060

For Resilience Engineering, 'failure' is the result of the adaptations necessary to cope with the complexity of the real world, rather than a malfunction. Human performance must continually adjust to current conditions and, because resources and time are finite, such adjustments are always approximate. Featuring contributions from leading international figures in human factors and safety, Resilience Engineering provides thought-provoking insights into system safety as an aggregate of its various components - subsystems, software, organizations, human behaviours - and the way in which they interact.

Reflections on the Fukushima Daiichi Nuclear Accident

Reflections on the Fukushima Daiichi Nuclear Accident
Author: Joonhong Ahn
Publisher: Springer
Total Pages: 456
Release: 2014-12-01
Genre: Technology & Engineering
ISBN: 3319120905

This book focuses on nuclear engineering education in the post-Fukushima era. It was edited by the organizers of the summer school held in August 2011 in University of California, Berkeley, as part of a collaborative program between the University of Tokyo and UC Berkeley. Motivated by the particular relevance and importance of social-scientific approaches to various crucial aspects of nuclear technology, special emphasis was placed on integrating nuclear science and engineering with social science. The book consists of the lectures given in 2011 summer school and additional chapters that cover developments in the past three years since the accident. It provides an arena for discussions to find and create a renewed platform for engineering practices, and thus nuclear engineering education, which are essential in the post-Fukushima era for nurturing nuclear engineers who need to be both technically competent and trusted in society.

Resilience Engineering in Practice

Resilience Engineering in Practice
Author: Professor Erik Hollnagel
Publisher: Ashgate Publishing, Ltd.
Total Pages: 363
Release: 2013-11-01
Genre: Technology & Engineering
ISBN: 1472420748

Resilience engineering depends on four abilities: the ability a) to respond to what happens, b) to monitor critical developments, c) to anticipate future threats and opportunities, and d) to learn from past experience - successes as well as failures. They

Critical Infrastructures Resilience

Critical Infrastructures Resilience
Author: Auroop Ratan Ganguly
Publisher: Routledge
Total Pages: 132
Release: 2018-02-21
Genre: Political Science
ISBN: 1498758649

This text offers comprehensive and principled, yet practical, guidelines to critical infrastructures resilience. Extreme events and stresses, including those that may be unprecedented but are no longer surprising, have disproportionate effects on critical infrastructures and hence on communities, cities, and megaregions. Critical infrastructures include buildings and bridges, dams, levees, and sea walls, as well as power plants and chemical factories, besides lifeline networks such as multimodal transportation, power grids, communication, and water or wastewater. The growing interconnectedness of natural-built-human systems causes cascading infrastructure failures and necessitates simultaneous recovery. This text explores the new paradigm centered on the concept of resilience by approaching the challenges posed by globalization, climate change, and growing urbanization on critical infrastructures and key resources through the combination of policy and engineering perspectives. It identifies solutions that are scientifically credible, data driven, and sound in engineering principles while concurrently informed by and supportive of social and policy imperatives. Critical Infrastructures Resilience will be of interest to students of engineering and policy.

Resilience Engineering Perspectives, Volume 1

Resilience Engineering Perspectives, Volume 1
Author: Christopher P. Nemeth
Publisher: CRC Press
Total Pages: 241
Release: 2016-12-05
Genre: Technology & Engineering
ISBN: 1351903918

In the resilience engineering approach to safety, failures and successes are seen as two different outcomes of the same underlying process, namely how people and organizations cope with complex, underspecified and therefore partly unpredictable work environments. Therefore safety can no longer be ensured by constraining performance and eliminating risks. Instead, it is necessary to actively manage how people and organizations adjust what they do to meet the current conditions of the workplace, by trading off efficiency and thoroughness and by making sacrificing decisions. The Ashgate Studies in Resilience Engineering series promulgates new methods, principles and experiences that can complement established safety management approaches, providing invaluable insights and guidance for practitioners and researchers alike in all safety-critical domains. While the Studies pertain to all complex systems they are of particular interest to high hazard sectors such as aviation, ground transportation, the military, energy production and distribution, and healthcare. Published periodically within this series will be edited volumes titled Resilience Engineering Perspectives. The first volume, Remaining Sensitive to the Possibility of Failure, presents a collection of 20 chapters from international experts. This collection deals with important issues such as measurements and models, the use of procedures to ensure safety, the relation between resilience and robustness, safety management, and the use of risk analysis. The final six chapters utilise the report from a serious medical accident to illustrate more concretely how resilience engineering can make a difference, both to the understanding of how accidents happen and to what an organisation can do to become more resilient.