Risk Assessment and Decision Analysis with Bayesian Networks

Risk Assessment and Decision Analysis with Bayesian Networks
Author: Norman Fenton
Publisher: CRC Press
Total Pages: 527
Release: 2012-11-07
Genre: Business & Economics
ISBN: 1439809100

Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.

Risk Assessment and Decision Analysis with Bayesian Networks

Risk Assessment and Decision Analysis with Bayesian Networks
Author: Norman Fenton
Publisher: CRC Press
Total Pages: 661
Release: 2018-09-03
Genre: Mathematics
ISBN: 1351978977

Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.

Risk Assessment and Decision Analysis with Bayesian Networks

Risk Assessment and Decision Analysis with Bayesian Networks
Author: Norman Fenton
Publisher: CRC Press
Total Pages: 783
Release: 2018-09-03
Genre: Mathematics
ISBN: 1351978969

Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.

Bayesian Decision Analysis

Bayesian Decision Analysis
Author: Jim Q. Smith
Publisher: Cambridge University Press
Total Pages: 349
Release: 2010-09-23
Genre: Mathematics
ISBN: 1139491113

Bayesian decision analysis supports principled decision making in complex domains. This textbook takes the reader from a formal analysis of simple decision problems to a careful analysis of the sometimes very complex and data rich structures confronted by practitioners. The book contains basic material on subjective probability theory and multi-attribute utility theory, event and decision trees, Bayesian networks, influence diagrams and causal Bayesian networks. The author demonstrates when and how the theory can be successfully applied to a given decision problem, how data can be sampled and expert judgements elicited to support this analysis, and when and how an effective Bayesian decision analysis can be implemented. Evolving from a third-year undergraduate course taught by the author over many years, all of the material in this book will be accessible to a student who has completed introductory courses in probability and mathematical statistics.

Bayesian Networks

Bayesian Networks
Author: Marco Scutari
Publisher: CRC Press
Total Pages: 275
Release: 2021-07-28
Genre: Computers
ISBN: 1000410382

Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Foundations of Risk Analysis

Foundations of Risk Analysis
Author: Terje Aven
Publisher: John Wiley & Sons
Total Pages: 208
Release: 2004-01-09
Genre: Mathematics
ISBN: 0470871237

Everyday we face decisions that carry an element of risk and uncertainty. The ability to analyse, communicate and control the level of risk entailed by these decisions remains one of the most pressing challenges to the analyst, scientist and manager. This book presents the foundational issues in risk analysis ? expressing risk, understanding what risk means, building risk models, addressing uncertainty, and applying probability models to real problems. The principal aim of the book is to give the reader the knowledge and basic thinking they require to approach risk and uncertainty to support decision making. Presents a statistical framework for dealing with risk and uncertainty. Includes detailed coverage of building and applying risk models and methods. Offers new perspectives on risk, risk assessment and the use of parametric probability models. Highlights a number of applications from business and industry. Adopts a conceptual approach based on elementary probability calculus and statistical theory. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.

Learning Bayesian Networks

Learning Bayesian Networks
Author: Richard E. Neapolitan
Publisher: Prentice Hall
Total Pages: 704
Release: 2004
Genre: Computers
ISBN:

In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.

Bayesian Networks

Bayesian Networks
Author: Olivier Pourret
Publisher: John Wiley & Sons
Total Pages: 446
Release: 2008-04-30
Genre: Mathematics
ISBN: 9780470994542

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

GIS and Multicriteria Decision Analysis

GIS and Multicriteria Decision Analysis
Author: Jacek Malczewski
Publisher: John Wiley & Sons
Total Pages: 414
Release: 1999-04-05
Genre: Science
ISBN: 9780471329442

From selecting sites for new hospitals, schools, and factories, to managing forests and rivers, to creating and maintaining highways and bridges, public and private organizations are often called on to make decisions on geographic questions that involve a multitude of alternatives and often conflicting evaluation criteria. This book presents a formal mechanism for dealing with these situations, capturing the information in a Geographic Information System and processing it to derive optimal recommendations for confronting these complex questions.