Robust Control Design with MATLAB®

Robust Control Design with MATLAB®
Author: Da-Wei Gu
Publisher: Springer Science & Business Media
Total Pages: 832
Release: 2005-06-20
Genre: Technology & Engineering
ISBN: 9781852339838

Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.

Optimal and Robust Control

Optimal and Robust Control
Author: Luigi Fortuna
Publisher: CRC Press
Total Pages: 253
Release: 2012-02-02
Genre: Technology & Engineering
ISBN: 146650191X

While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.

Design of Embedded Robust Control Systems Using MATLAB® / Simulink®

Design of Embedded Robust Control Systems Using MATLAB® / Simulink®
Author: Petko Hristov Petkov
Publisher: Institution of Engineering and Technology
Total Pages: 533
Release: 2018-04-25
Genre: Computers
ISBN: 1785613308

Robust control theory allows for changes in a system whilst maintaining stability and performance. Applications of this technique are very important for dependable embedded systems, making technologies such as drones and other autonomous systems with sophisticated embedded controllers and systems relatively common-place.

Robust Control Systems

Robust Control Systems
Author: Uwe Mackenroth
Publisher: Springer Science & Business Media
Total Pages: 524
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662097753

Self-contained introduction to control theory that emphasizes on the most modern designs for high performance and robustness. It assumes no previous coursework and offers three chapters of key topics summarizing classical control. To provide readers with a deeper understanding of robust control theory than would be otherwise possible, the text incorporates mathematical derivations and proofs. Includes many elementary examples and advanced case studies using MATLAB Toolboxes.

Linear Feedback Control

Linear Feedback Control
Author: Dingyu Xue
Publisher: SIAM
Total Pages: 366
Release: 2007-01-01
Genre: Mathematics
ISBN: 9780898718621

This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.

Robust Control Design with MATLAB®

Robust Control Design with MATLAB®
Author: Da-Wei Gu
Publisher: Springer Science & Business Media
Total Pages: 393
Release: 2006-03-30
Genre: Technology & Engineering
ISBN: 1846280915

Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.

Robust Modal Control with a Toolbox for Use with MATLAB®

Robust Modal Control with a Toolbox for Use with MATLAB®
Author: Jean-François Magni
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2012-12-06
Genre: Science
ISBN: 1461506379

Robust Modal Control covers most classical multivariable modal control design techniques that were shown to be effective in practice, and in addition proposes several new tools. The proposed new tools include: minimum energy eigenvector selection, low order observer-based control design, conversion to observer-based controllers, a new multimodel design technique, and modal analysis. The text is accompanied by a CD-ROM containing MATLAB® software for the implementation of the proposed techniques. The software is in use in aeronautical industry and has proven to be effective and functional. For more detail, please visit the author's webpage at http://www.cert.fr/dcsd/idco/perso/Magni/booksandtb.html

Robust Control of DC-DC Converters

Robust Control of DC-DC Converters
Author: Farzin Asadi
Publisher: Springer Nature
Total Pages: 119
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031025032

DC-DC converters require negative feedback to provide a suitable output voltage or current for the load. Obtaining a stable output voltage or current in the presence of disturbances like input voltage changes and/or output load changes seems impossible without some form of control. This book shows how simple controllers such as Proportional-Integral (PI) can turn into a robust controller by correct selection of its parameters. Kharitonov's theorem is an important tool toward this end. This book consist of two parts. The first part shows how one can obtain the interval plant model of a DC-DC converter. The second part introduces the Kharitonov's theorem. Kharitonov's theorem is an analysis tool rather than a design tool. Some case studies show how it can be used as a design tool. The prerequisite for reading this book is a first course on feedback control theory and power electronics.