Seismic Design of Reinforced Concrete Buildings

Seismic Design of Reinforced Concrete Buildings
Author: Jack Moehle
Publisher: McGraw Hill Professional
Total Pages: 783
Release: 2014-10-06
Genre: Technology & Engineering
ISBN: 0071839453

Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations

Design of Reinforced Concrete Buildings for Seismic Performance

Design of Reinforced Concrete Buildings for Seismic Performance
Author: Mark Aschheim
Publisher: CRC Press
Total Pages: 576
Release: 2019-04-05
Genre: Technology & Engineering
ISBN: 148226692X

The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Concrete Buildings in Seismic Regions, Second Edition

Concrete Buildings in Seismic Regions, Second Edition
Author: George Penelis
Publisher: CRC Press
Total Pages: 821
Release: 2018-10-04
Genre: Technology & Engineering
ISBN: 1351578774

Reinforced concrete (R/C) is one of the main building materials used worldwide, and an understanding of its structural performance under gravity and seismic loads, albeit complex, is crucial for the design of cost effective and safe buildings.Concrete Buildings in Seismic Regions comprehensively covers of all the analysis and design issues related

Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings

Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings
Author: P. Fajfar
Publisher: CRC Press
Total Pages: 318
Release: 1992-03-20
Genre: Architecture
ISBN: 1851667644

Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.

Seismic Design of Reinforced Concrete and Masonry Buildings

Seismic Design of Reinforced Concrete and Masonry Buildings
Author: Thomas Paulay
Publisher: Wiley-Interscience
Total Pages: 768
Release: 1992-04-10
Genre: Technology & Engineering
ISBN: 9780471549154

Emphasizes actual structural design, not analysis, of multistory buildings for seismic resistance. Strong emphasis is placed on specific detailing requirements for construction. Fundamental design principles are presented to create buildings that respond to a wide range of potential seismic forces, which are illustrated by numerous detailed examples. The discussion includes the design of reinforced concrete ductile frames, structural walls, dual systems, reinforced masonry structures, buildings with restricted ductility and foundation walls. In addition to the examples, full design calculations are given for three prototype structures.

Seismic Design of Reinforced and Precast Concrete Buildings

Seismic Design of Reinforced and Precast Concrete Buildings
Author: Robert E. Englekirk
Publisher: John Wiley & Sons
Total Pages: 856
Release: 2003-03-10
Genre: Technology & Engineering
ISBN: 9780471081227

* Presents the basics of seismic-resistant design of concrete structures. * Provides a major focus on the seismic design of precast bracing systems.

Seismic Design of Concrete Buildings to Eurocode 8

Seismic Design of Concrete Buildings to Eurocode 8
Author: Michael Fardis
Publisher: CRC Press
Total Pages: 414
Release: 2015-02-04
Genre: Technology & Engineering
ISBN: 1482282534

An Original Source of Expressions and Tools for the Design of Concrete Elements with EurocodeSeismic design of concrete buildings needs to be performed to a strong and recognized standard. Eurocode 8 was introduced recently in the 30 countries belonging to CEN, as part of the suite of Structural Eurocodes, and it represents the first European Stand

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures
Author: Srinivasan Chandrasekaran
Publisher: CRC Press
Total Pages: 268
Release: 2016-04-19
Genre: Technology & Engineering
ISBN: 1439809151

Tools to Safeguard New Buildings and Assess Existing OnesNonlinear analysis methods such as static pushover are globally considered a reliable tool for seismic and structural assessment. But the accuracy of seismic capacity estimates-which can prevent catastrophic loss of life and astronomical damage repair costs-depends on the use of the correct b

Displacement-based Seismic Design of Reinforced Concrete Buildings

Displacement-based Seismic Design of Reinforced Concrete Buildings
Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
Total Pages: 206
Release: 2003
Genre: Technology & Engineering
ISBN: 9782883940659

A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.