Semantic Interaction for Visual Analytics

Semantic Interaction for Visual Analytics
Author: Alex Endert
Publisher: Springer Nature
Total Pages: 89
Release: 2022-05-31
Genre: Mathematics
ISBN: 3031026039

This book discusses semantic interaction, a user interaction methodology for visual analytic applications that more closely couples the visual reasoning processes of people with the computation. This methodology affords user interaction on visual data representations that are native to the domain of the data. User interaction in visual analytics systems is critical to enabling visual data exploration. Interaction transforms people from mere viewers to active participants in the process of analyzing and understanding data. This discourse between people and data enables people to understand aspects of their data, such as structure, patterns, trends, outliers, and other properties that ultimately result in insight. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. The book provides a description of the principles of semantic interaction, providing design guidelines for the integration of semantic interaction into visual analytics, examples of existing technologies that leverage semantic interaction, and a discussion of how to evaluate these technologies. Semantic interaction has the potential to increase the effectiveness of visual analytic technologies and opens possibilities for a fundamentally new design space for user interaction in visual analytics systems.

Semantic Interaction for Visual Analytics

Semantic Interaction for Visual Analytics
Author: Alex Endert
Publisher: Morgan & Claypool Publishers
Total Pages: 101
Release: 2016-09-16
Genre: Computers
ISBN: 1627052917

This book discusses semantic interaction, a user interaction methodology for visual analytic applications that more closely couples the visual reasoning processes of people with the computation. This methodology affords user interaction on visual data representations that are native to the domain of the data. User interaction in visual analytics systems is critical to enabling visual data exploration. Interaction transforms people from mere viewers to active participants in the process of analyzing and understanding data. This discourse between people and data enables people to understand aspects of their data, such as structure, patterns, trends, outliers, and other properties that ultimately result in insight. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. The book provides a description of the principles of semantic interaction, providing design guidelines for the integration of semantic interaction into visual analytics, examples of existing technologies that leverage semantic interaction, and a discussion of how to evaluate these technologies. Semantic interaction has the potential to increase the effectiveness of visual analytic technologies and opens possibilities for a fundamentally new design space for user interaction in visual analytics systems.

Advances in Visual Computing

Advances in Visual Computing
Author: George Bebis
Publisher: Springer Nature
Total Pages: 486
Release: 2022-12-10
Genre: Computers
ISBN: 3031207130

This two-volume set of LNCS 13598 and 13599 constitutes the refereed proceedings of the 17th International Symposium on Visual Computing, ISVC 2022, which was held in October 2022. The 61 papers presented in these volumes were carefully reviewed and selected from 110 submissions. They are organized in the following topical sections: Part I: ​deep learning I; visualization; object detection and recognition; deep learning II; video analysis and event recognition; computer graphics; ST: biomedical imaging techniques for cancer detection, diagnosis and management. Part II: ​ST: neuro-inspired artificia intelligence; applications; segmentation and tracking; virtual reality; poster.

Visual Data Mining

Visual Data Mining
Author: Simeon Simoff
Publisher: Springer
Total Pages: 417
Release: 2008-07-23
Genre: Computers
ISBN: 3540710809

Visual Data Mining—Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years – Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the “current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory,” while Han has suggested that the “data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . ” A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .

Linked Data Visualization

Linked Data Visualization
Author: Laura Po
Publisher: Morgan & Claypool Publishers
Total Pages: 157
Release: 2020-03-20
Genre: Computers
ISBN: 1681737264

Linked Data (LD) is a well-established standard for publishing and managing structured information on the Web, gathering and bridging together knowledge from different scientific and commercial domains. The development of Linked Data Visualization techniques and tools has been adopted as the established practice for the analysis of this vast amount of information by data scientists, domain experts, business users, and citizens. This book covers a wide spectrum of visualization topics, providing an overview of the recent advances in this area, focusing on techniques, tools, and use cases of visualization and visual analysis of LD. It presents core concepts related to data visualization and LD technologies, techniques employed for data visualization based on the characteristics of data, techniques for Big Data visualization, tools and use cases in the LD context, and, finally, a thorough assessment of the usability of these tools under different scenarios. The purpose of this book is to offer a complete guide to the evolution of LD visualization for interested readers from any background and to empower them to get started with the visual analysis of such data. This book can serve as a course textbook or as a primer for all those interested in LD and data visualization.

Augmented Cognition. Neurocognition and Machine Learning

Augmented Cognition. Neurocognition and Machine Learning
Author: Dylan D. Schmorrow
Publisher: Springer
Total Pages: 600
Release: 2017-06-28
Genre: Computers
ISBN: 3319586289

This volume constitutes the proceedings of the 11th International Conference on Augmented Cognition, AC 2017, held as part of the International Conference on Human-Computer Interaction, HCII 2017, which took place in Vancouver, BC, Canada, in July 2017. HCII 2017 received a total of 4340 submissions, of which 1228 papers were accepted for publication after a careful reviewing process. The papers thoroughly cover the entire field of Human-Computer Interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas. The two volumes set of AC 2017 presents 81 papers which are organized in the following topical sections: electroencephalography and brain activity measurement, eye tracking in augmented cognition, physiological measuring and bio-sensing, machine learning in augmented cognition, cognitive load and performance, adaptive learning systems, brain-computer interfaces, human cognition and behavior in complex tasks and environments.

User-Centered Evaluation of Visual Analytics

User-Centered Evaluation of Visual Analytics
Author: Jean Scholtz
Publisher: Springer Nature
Total Pages: 71
Release: 2022-05-31
Genre: Mathematics
ISBN: 3031026055

Visual analytics has come a long way since its inception in 2005. The amount of data in the world today has increased significantly and experts in many domains are struggling to make sense of their data. Visual analytics is helping them conduct their analyses. While software developers have worked for many years to develop software that helps users do their tasks, this task is becoming more and more onerous, as understanding the needs and data used by expert users requires more than some simple usability testing during the development process. The need for a user-centered evaluation process was envisioned in Illuminating the Path, the seminal work on visual analytics by James Thomas and Kristin Cook in 2005. We have learned over the intervening years that not only will user-centered evaluation help software developers to turn out products that have more utility, the evaluation efforts can also help point out the direction for future research efforts. This book describes the efforts that go into analysis, including critical thinking, sensemaking, and various analytics techniques learned from the intelligence community. Support for these components is needed in order to provide the most utility for the expert users. There are a good number of techniques for evaluating software that hasbeen developed within the human-computer interaction (HCI) community. While some of these techniques can be used as is, others require modifications. These too are described in the book. An essential point to stress is that the users of the domains for which visual analytics tools are being designed need to be involved in the process. The work they do and the obstacles in their current processes need to be understood in order to determine both the types of evaluations needed and the metrics to use in these evaluations. At this point in time, very few published efforts describe more than informal evaluations. The purpose of this book is to help readers understand the need for more user-centered evaluations to drive both better-designed products and to define areas for future research. Hopefully readers will view this work as an exciting and creative effort and will join the community involved in these efforts.

Visual Analysis of Multilayer Networks

Visual Analysis of Multilayer Networks
Author: Fintan McGee
Publisher: Springer Nature
Total Pages: 134
Release: 2022-06-01
Genre: Mathematics
ISBN: 303102608X

The emergence of multilayer networks as a concept from the field of complex systems provides many new opportunities for the visualization of network complexity, and has also raised many new exciting challenges. The multilayer network model recognizes that the complexity of relationships between entities in real-world systems is better embraced as several interdependent subsystems (or layers) rather than a simple graph approach. Despite only recently being formalized and defined, this model can be applied to problems in the domains of life sciences, sociology, digital humanities, and more. Within the domain of network visualization there already are many existing systems, which visualize data sets having many characteristics of multilayer networks, and many techniques, which are applicable to their visualization. In this Synthesis Lecture, we provide an overview and structured analysis of contemporary multilayer network visualization. This is not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those solving problems within application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer network visualization, as well as tools, tasks, and analytic techniques from within application domains. We also identify the research opportunities and examine outstanding challenges for multilayer network visualization along with potential solutions and future research directions for addressing them.

Eye Tracking and Visual Analytics

Eye Tracking and Visual Analytics
Author: Michael Burch
Publisher: CRC Press
Total Pages: 380
Release: 2022-09-01
Genre: Computers
ISBN: 1000792943

Visualization and visual analytics are powerful concepts for exploring data from various application domains. The endless number of possible parameters and the many ways to combine visual variables as well as algorithms and interaction techniques create lots of possibilities for building such techniques and tools. The major goal of those tools is to include the human users with their tasks at hand, their hypotheses, and research questions to provide ways to find solutions to their problems or at least to hint them in a certain direction to come closer to a problem solution. However, due to the sheer number of design variations, it is unclear which technique is suitable for those tasks at hand, requiring some kind of user evaluation to figure out how the human users perform while solving their tasks. The technology of eye tracking has existed for a long time; however, it has only recently been applied to visualization and visual analytics as a means to provide insights to the users’ visual attention behavior. This generates another kind of dataset that has a spatio-temporal nature and hence demands for advanced data science and visual analytics concepts to find insights into the recorded eye movement data, either as a post process or even in real-time. This book describes aspects from the interdisciplinary field of visual analytics, but also discusses more general approaches from the field of visualization as well as algorithms and data handling. A major part of the book covers research on those aspects under the light and perspective of eye tracking, building synergy effects between both fields – eye tracking and visual analytics – in both directions, i.e. eye tracking applied to visual analytics and visual analytics applied to eye tracking data. Technical topics discussed in the book include: • Visualization; • Visual Analytics; • User Evaluation; • Eye Tracking; • Eye Tracking Data Analytics; Eye Tracking and Visual Analytics includes more than 500 references from the fields of visualization, visual analytics, user evaluation, eye tracking, and data science, all fields which have their roots in computer science. Eye Tracking and Visual Analytics is written for researchers in both academia and industry, particularly newcomers starting their PhD, but also for PostDocs and professionals with a longer research history in one or more of the covered research fields. Moreover, it can be used to get an overview about one or more of the involved fields and to understand the interface and synergy effects between all of those fields. The book might even be used for teaching lectures in the fields of information visualization, visual analytics, and/or eye tracking.