Sensitivity Analysis in Practice

Sensitivity Analysis in Practice
Author: Andrea Saltelli
Publisher: John Wiley & Sons
Total Pages: 232
Release: 2004-07-16
Genre: Mathematics
ISBN: 047087094X

Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.

Global Sensitivity Analysis

Global Sensitivity Analysis
Author: Andrea Saltelli
Publisher: John Wiley & Sons
Total Pages: 304
Release: 2008-02-28
Genre: Mathematics
ISBN: 9780470725177

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.

Sensitivity Analysis

Sensitivity Analysis
Author: Andrea Saltelli
Publisher: Wiley
Total Pages: 0
Release: 2009-03-16
Genre: Mathematics
ISBN: 9780470743829

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Sensitivity analysis is used to ascertain how a given model output depends upon the input parameters. This is an important method for checking the quality of a given model, as well as a powerful tool for checking the robustness and reliability of its analysis. The topic is acknowledged as essential for good modelling practice and is an implicit part of any modelling field. Offers an accessible introduction to sensitivity analysis. Covers all the latest research. Illustrates concepts with numerous examples, applications and case studies. Includes contributions from the leading researchers active in developing strategies for sensitivity analysis. The principles of sensitivity analysis are carefully described and suitable methods for approaching many types of problems are given. The book introduces the modeller to the entire casual assessment chain, from data to predictions, whilst explaining the impact of source uncertainties and framing assumptions. A ‘hitch-hikers guide’ is included to allow the more experienced reader to readily access specific applications. Modellers from a wide range of disciplines, including biostatistics, economics, environmental impact assessment, chemistry and engineering will benefit greatly from the numerous examples and applications. "Presents many different sensitivity analysis methodologies and demonstrates their usefulness in scientific research." (Zentralblatt MATH)

The Prevention and Treatment of Missing Data in Clinical Trials

The Prevention and Treatment of Missing Data in Clinical Trials
Author: National Research Council
Publisher: National Academies Press
Total Pages: 163
Release: 2010-12-21
Genre: Medical
ISBN: 030918651X

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
Total Pages: 236
Release: 2013-02-21
Genre: Medical
ISBN: 1587634236

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Basics and Trends in Sensitivity Analysis: Theory and Practice in R

Basics and Trends in Sensitivity Analysis: Theory and Practice in R
Author: Sébastien Da Veiga
Publisher: SIAM
Total Pages: 307
Release: 2021-10-14
Genre: Mathematics
ISBN: 1611976693

This book provides an overview of global sensitivity analysis methods and algorithms, including their theoretical basis and mathematical properties. The authors use a practical point of view and real case studies as well as numerous examples, and applications of the different approaches are illustrated throughout using R code to explain their usage and usefulness in practice. Basics and Trends in Sensitivity Analysis: Theory and Practice in R covers a lot of material, including theoretical aspects of Sobol’ indices as well as sampling-based formulas, spectral methods, and metamodel-based approaches for estimation purposes; screening techniques devoted to identifying influential and noninfluential inputs; variance-based measures when model inputs are statistically dependent (and several other approaches that go beyond variance-based sensitivity measures); and a case study in R related to a COVID-19 epidemic model where the full workflow of sensitivity analysis combining several techniques is presented. This book is intended for engineers, researchers, and undergraduate students who use complex numerical models and have an interest in sensitivity analysis techniques and is appropriate for anyone with a solid mathematical background in basic statistical and probability theories who develops and uses numerical models in all scientific and engineering domains.

Sensitivity & Uncertainty Analysis, Volume 1

Sensitivity & Uncertainty Analysis, Volume 1
Author: Dan G. Cacuci
Publisher: CRC Press
Total Pages: 304
Release: 2003-05-28
Genre: Mathematics
ISBN: 0203498798

As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable investigative scientific tools in their own right. While most techniques used for these analyses are well documented, there has yet to appear a systematic treatment of the method based

Missing Data in Longitudinal Studies

Missing Data in Longitudinal Studies
Author: Michael J. Daniels
Publisher: CRC Press
Total Pages: 324
Release: 2008-03-11
Genre: Mathematics
ISBN: 1420011189

Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ

Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records
Author: MIT Critical Data
Publisher: Springer
Total Pages: 435
Release: 2016-09-09
Genre: Medical
ISBN: 3319437429

This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.