Silicon-germanium Heterojunction Bipolar Transistors

Silicon-germanium Heterojunction Bipolar Transistors
Author: John D. Cressler
Publisher: Artech House
Total Pages: 592
Release: 2003
Genre: Science
ISBN: 9781580535991

This informative, new resource presents the first comprehensive treatment of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). It offers you a complete, from-the-ground-up understanding of SiGe HBT devices and technology, from a very broad perspective. The book covers motivation, history, materials, fabrication, device physics, operational principles, and circuit-level properties associated with this new cutting-edge semiconductor device technology. Including over 400 equations and more than 300 illustrations, this hands-on reference shows you in clear and concise language how to design, simulate, fabricate, and measure a SiGe HBT.

Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications

Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications
Author: Niccolò Rinaldi
Publisher: River Publishers
Total Pages: 378
Release: 2018-03-15
Genre: Technology & Engineering
ISBN: 8793519613

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becoming an ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000's. Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration. Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.

SiGe Heterojunction Bipolar Transistors

SiGe Heterojunction Bipolar Transistors
Author: Peter Ashburn
Publisher: John Wiley & Sons
Total Pages: 286
Release: 2004-02-06
Genre: Technology & Engineering
ISBN: 0470090731

SiGe HBTs is a hot topic within the microelectronics community because of its applications potential within integrated circuits operating at radio frequencies. Applications range from high speed optical networking to wireless communication devices. The addition of germanium to silicon technologies to form silicon germanium (SiGe) devices has created a revolution in the semiconductor industry. These transistors form the enabling devices in a wide range of products for wireless and wired communications. This book features: SiGe products include chip sets for wireless cellular handsets as well as WLAN and high-speed wired network applications Describes the physics and technology of SiGe HBTs, with coverage of Si and Ge bipolar transistors Written with the practising engineer in mind, this book explains the operating principles and applications of bipolar transistor technology. Essential reading for practising microelectronics engineers and researchers. Also, optical communications engineers and communication technology engineers. An ideal reference tool for masters level students in microelectronics and electronics engineering.

Compact Hierarchical Bipolar Transistor Modeling with Hicum

Compact Hierarchical Bipolar Transistor Modeling with Hicum
Author: Michael Schr”ter
Publisher: World Scientific
Total Pages: 753
Release: 2010
Genre: Technology & Engineering
ISBN: 981427321X

Compact Hierarchical Bipolar Transistor Modeling with HICUM will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe:C HBTs fabricated with existing cutting-edge process technology. The book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models.

Compact Modeling

Compact Modeling
Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
Total Pages: 531
Release: 2010-06-22
Genre: Technology & Engineering
ISBN: 9048186145

Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

High-Frequency Bipolar Transistors

High-Frequency Bipolar Transistors
Author: Michael Reisch
Publisher: Springer Science & Business Media
Total Pages: 686
Release: 2003-03-05
Genre: Medical
ISBN: 9783540677024

This modern book-length treatment gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology, with particular emphasis placed on today's advanced compact models and their physical foundations.

Silicon Quantum Integrated Circuits

Silicon Quantum Integrated Circuits
Author: E. Kasper
Publisher: Springer Science & Business Media
Total Pages: 367
Release: 2005-12-11
Genre: Technology & Engineering
ISBN: 3540263829

Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.

Silicon-Germanium Carbon Alloys

Silicon-Germanium Carbon Alloys
Author: S. Pantellides
Publisher: CRC Press
Total Pages: 552
Release: 2002-07-26
Genre: Technology & Engineering
ISBN: 9781560329633

Carbon (C) and Silicon Germanium (SiGe) work like a magic sauce. At least in small concentrations, they make everything taste better. It is remarkable enough that SiGe, a new material, and the heterobipolar transistor, a new device, appear on the brink of impacting the exploding wireless market. The addition of C to SiGe, albeit in small concentrations, looks to have breakthrough potential. Here, at last, is proof that materials science can put a rocket booster on the silicon-mind, the silicon transistor. Scientific excitement arises, as always, from the new possibilities a multicomponent materials system offers. Bandgaps can be changed, strains can be tuned, and properties can be tailored. This is catnip to the materials scientist. The wide array of techniques applied here to the SiGeC system bear testimony to the ingenious approaches now available for mastering the complexities of new materials

Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications

Silicon-Germanium Heterojunction Bipolar Transistors for Mm-wave Systems Technology, Modeling and Circuit Applications
Author: Niccolò Rinaldi
Publisher: CRC Press
Total Pages: 377
Release: 2022-09-01
Genre: Technology & Engineering
ISBN: 1000794407

The semiconductor industry is a fundamental building block of the new economy, there is no area of modern life untouched by the progress of nanoelectronics. The electronic chip is becomingan ever-increasing portion of system solutions, starting initially from less than 5% in the 1970 microcomputer era, to more than 60% of the final cost of a mobile telephone, 50% of the price of a personal computer (representing nearly 100% of the functionalities) and 30% of the price of a monitor in the early 2000’s.Interest in utilizing the (sub-)mm-wave frequency spectrum for commercial and research applications has also been steadily increasing. Such applications, which constitute a diverse but sizeable future market, span a large variety of areas such as health, material science, mass transit, industrial automation, communications, and space exploration.Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems Technology, Modeling and Circuit Applications provides an overview of results of the DOTSEVEN EU research project, and as such focusses on key material developments for mm-Wave Device Technology. It starts with the motivation at the beginning of the project and a summary of its major achievements. The subsequent chapters provide a detailed description of the obtained research results in the various areas of process development, device simulation, compact device modeling, experimental characterization, reliability, (sub-)mm-wave circuit design and systems.