Solution Sets for Differential Equations and Inclusions

Solution Sets for Differential Equations and Inclusions
Author: Smaïl Djebali
Publisher: Walter de Gruyter
Total Pages: 474
Release: 2012-12-06
Genre: Mathematics
ISBN: 3110293560

This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.

Impulsive Differential Inclusions

Impulsive Differential Inclusions
Author: John R. Graef
Publisher: Walter de Gruyter
Total Pages: 412
Release: 2013-07-31
Genre: Mathematics
ISBN: 3110295318

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Topological Structure of the Solution Set for Evolution Inclusions

Topological Structure of the Solution Set for Evolution Inclusions
Author: Yong Zhou
Publisher: Springer
Total Pages: 278
Release: 2017-10-31
Genre: Mathematics
ISBN: 9811066566

This book systematically presents the topological structure of solution sets and attractability for nonlinear evolution inclusions, together with its relevant applications in control problems and partial differential equations. It provides readers the background material needed to delve deeper into the subject and explore the rich research literature. In addition, the book addresses many of the basic techniques and results recently developed in connection with this theory, including the structure of solution sets for evolution inclusions with m-dissipative operators; quasi-autonomous and non-autonomous evolution inclusions and control systems; evolution inclusions with the Hille-Yosida operator; functional evolution inclusions; impulsive evolution inclusions; and stochastic evolution inclusions. Several applications of evolution inclusions and control systems are also discussed in detail. Based on extensive research work conducted by the authors and other experts over the past four years, the information presented is cutting-edge and comprehensive. As such, the book fills an important gap in the body of literature on the structure of evolution inclusions and its applications.

Topological Methods in Differential Equations and Inclusions

Topological Methods in Differential Equations and Inclusions
Author: Andrzej Granas
Publisher: Springer Science & Business Media
Total Pages: 531
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401103399

The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.

Theory of Fuzzy Differential Equations and Inclusions

Theory of Fuzzy Differential Equations and Inclusions
Author: V. Lakshmikantham
Publisher: CRC Press
Total Pages: 192
Release: 2004-11-23
Genre: Mathematics
ISBN: 9780203011386

Fuzzy differential functions are applicable to real-world problems in engineering, computer science, and social science. That relevance makes for rapid development of new ideas and theories. This volume is a timely introduction to the subject that describes the current state of the theory of fuzzy differential equations and inclusions and provides a systematic account of recent developments. The chapters are presented in a clear and logical way and include the preliminary material for fuzzy set theory; a description of calculus for fuzzy functions, an investigation of the basic theory of fuzzy differential equations, and an introduction to fuzzy differential inclusions.

Fixed Point Theory for Decomposable Sets

Fixed Point Theory for Decomposable Sets
Author: Andrzej Fryszkowski
Publisher: Springer Science & Business Media
Total Pages: 210
Release: 2006-02-21
Genre: Mathematics
ISBN: 1402024991

Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if (Q) for all and measurable A. This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property. Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.

Topological Fixed Point Theory of Multivalued Mappings

Topological Fixed Point Theory of Multivalued Mappings
Author: Lech Górniewicz
Publisher: Springer Science & Business Media
Total Pages: 548
Release: 2006-06-03
Genre: Mathematics
ISBN: 1402046669

This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.

Set-Valued Stochastic Integrals and Applications

Set-Valued Stochastic Integrals and Applications
Author: Michał Kisielewicz
Publisher: Springer Nature
Total Pages: 287
Release: 2020-06-26
Genre: Mathematics
ISBN: 3030403297

This book is among the first concise presentations of the set-valued stochastic integration theory as well as its natural applications, as well as the first to contain complex approach theory of set-valued stochastic integrals. Taking particular consideration of set-valued Itô , set-valued stochastic Lebesgue, and stochastic Aumann integrals, the volume is divided into nine parts. It begins with preliminaries of mathematical methods that are then applied in later chapters containing the main results and some of their applications, and contains many new problems. Methods applied in the book are mainly based on functional analysis, theory of probability processes, and theory of set-valued mappings. The volume will appeal to students of mathematics, economics, and engineering, as well as to mathematics professionals interested in applications of the theory of set-valued stochastic integrals.

Introduction to the Theory of Differential Inclusions

Introduction to the Theory of Differential Inclusions
Author: Georgi V. Smirnov
Publisher: American Mathematical Society
Total Pages: 226
Release: 2022-02-22
Genre: Mathematics
ISBN: 1470468549

A differential inclusion is a relation of the form $dot x in F(x)$, where $F$ is a set-valued map associating any point $x in R^n$ with a set $F(x) subset R^n$. As such, the notion of a differential inclusion generalizes the notion of an ordinary differential equation of the form $dot x = f(x)$. Therefore, all problems usually studied in the theory of ordinary differential equations (existence and continuation of solutions, dependence on initial conditions and parameters, etc.) can be studied for differential inclusions as well. Since a differential inclusion usually has many solutions starting at a given point, new types of problems arise, such as investigation of topological properties of the set of solutions, selection of solutions with given properties, and many others. Differential inclusions play an important role as a tool in the study of various dynamical processes described by equations with a discontinuous or multivalued right-hand side, occurring, in particular, in the study of dynamics of economical, social, and biological macrosystems. They also are very useful in proving existence theorems in control theory. This text provides an introductory treatment to the theory of differential inclusions. The reader is only required to know ordinary differential equations, theory of functions, and functional analysis on the elementary level. Chapter 1 contains a brief introduction to convex analysis. Chapter 2 considers set-valued maps. Chapter 3 is devoted to the Mordukhovich version of nonsmooth analysis. Chapter 4 contains the main existence theorems and gives an idea of the approximation techniques used throughout the text. Chapter 5 is devoted to the viability problem, i.e., the problem of selection of a solution to a differential inclusion that is contained in a given set. Chapter 6 considers the controllability problem. Chapter 7 discusses extremal problems for differential inclusions. Chapter 8 presents stability theory, and Chapter 9 deals with the stabilization problem.