Spin Current

Spin Current
Author: Sadamichi Maekawa
Publisher: Oxford University Press
Total Pages: 541
Release: 2017
Genre: Science
ISBN: 0198787073

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Nanomagnetic Materials

Nanomagnetic Materials
Author: Akinobu Yamaguchi
Publisher: Elsevier
Total Pages: 814
Release: 2021-06-28
Genre: Technology & Engineering
ISBN: 0128223545

Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism. - Explains manufacturing principles and process for nanomagnetic materials - Discusses physical and chemical properties and potential industrial applications, such as magnetic data storage, sensors, oscillator, permanent magnets, power generations, and biomedical applications - Assesses the major challenges of using magnetic nanomaterials on a broad scale

Spintronic 2D Materials

Spintronic 2D Materials
Author: Wenqing Liu
Publisher: Woodhead Publishing
Total Pages: 322
Release: 2019-11-28
Genre: Technology & Engineering
ISBN: 0081021550

Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. - Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides - Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques - Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications

Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications
Author:
Publisher: Academic Press
Total Pages: 431
Release: 2013-10-30
Genre: Science
ISBN: 0124080715

This volume of Solid State Physics provides a broad review on recent advances in the field of magnetic insulators, ranging from new spin effects to thin film growth and high-frequency applications. It covers both theoretical and experimental progress. The topics include the use of magnetic insulators to produce and transfer spin currents, the excitation of spin waves in magnetic insulators by spin transfer torque, interplay between the spin and heat transports in magnetic insulator/normal metal heterostructures, nonlinear spin waves in thin films, development of high-quality nanometer thick films, and applications of magnetic insulators in rf, microwave, and terahertz devices, among others. The volume not only presents introductions and tutorials for those just entering the field, but also provides comprehensive yet timely summaries to specialists in the field. Solid-state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious series presents timely and state-of-the-art reviews pertaining to all aspects of solid-state physics. - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications

Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications
Author: Song Sun
Publisher: CRC Press
Total Pages: 444
Release: 2022-10-27
Genre: Technology & Engineering
ISBN: 1000772594

Driven by continuing pursuits in device miniaturization and performance improvement, emergent micro- and nanomaterials hold the keys to enabling next-generation technologies in optical, infrared, and terahertz applications, owing to their unique properties and strong responses in these frequency bands. Development of these fascinating materials has triggered a number of opportunities in the applied sciences, and some have even made their impact in the market. Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications reviews state-of-the-art developments in various emergent materials and their implementation in applications such as sensors, waveplates, communications, and light sources, among others. The book discusses the similarities, advantages, and limitations and offers a comparative of each material. This volume: Covers all emergent materials (natural and artificial) that are promising for optical, infrared, and terahertz applications Comparatively analyzes these materials, elucidating their unique advantages, limitations, and application scopes Provides an up-to-date record on achievements and progress in cutting-edge optical, infrared, and terahertz applications Offers a comprehensive overview to connect multidisciplinary fields, such as materials, physics, and optics, to serve as a basis for future progress This book is a valuable reference for engineers, researchers, and students in the areas of materials and optics, as well as physics, and will benefit both junior- and senior-level researchers.

A New Direction in Mathematics for Materials Science

A New Direction in Mathematics for Materials Science
Author: Susumu Ikeda
Publisher: Springer
Total Pages: 93
Release: 2015-12-08
Genre: Mathematics
ISBN: 4431558640

This book is the first volume of the SpringerBriefs in the Mathematics of Materials and provides a comprehensive guide to the interaction of mathematics with materials science. The anterior part of the book describes a selected history of materials science as well as the interaction between mathematics and materials in history. The emergence of materials science was itself a result of an interdisciplinary movement in the 1950s and 1960s. Materials science was formed by the integration of metallurgy, polymer science, ceramics, solid state physics, and related disciplines. We believe that such historical background helps readers to understand the importance of interdisciplinary interaction such as mathematics–materials science collaboration. The middle part of the book describes mathematical ideas and methods that can be applied to materials problems and introduces some examples of specific studies—for example, computational homology applied to structural analysis of glassy materials, stochastic models for the formation process of materials, new geometric measures for finite carbon nanotube molecules, mathematical technique predicting a molecular magnet, and network analysis of nanoporous materials. The details of these works will be shown in the subsequent volumes of this SpringerBriefs in the Mathematics of Materials series by the individual authors. The posterior section of the book presents how breakthroughs based on mathematics–materials science collaborations can emerge. The authors' argument is supported by the experiences at the Advanced Institute for Materials Research (AIMR), where many researchers from various fields gathered and tackled interdisciplinary research.

Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 797
Release: 2016-04-19
Genre: Science
ISBN: 1439803781

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal

Spintronics

Spintronics
Author: Jean-Philippe Ansermet
Publisher: CRC Press
Total Pages: 455
Release: 2024-08-13
Genre: Science
ISBN: 104009788X

A sound understanding of magnetism, transport theory, spin relaxation mechanisms, and magnetization dynamics is necessary to engage in spintronics research. In this primer, special effort has been made to give straightforward explanations for these advanced concepts. This book will be a valuable resource for graduate students in spintronics and related fields. Concepts of magnetism such as exchange interaction, spin-orbit coupling, spin canting, and magnetic anisotropy are introduced. Spin-dependent transport is described using both thermodynamics and Boltzmann’s equation, including Berry curvature corrections. Spin relaxation phenomenology is accounted for with master equations for quantum spin systems coupled to a bath. Magnetic resonance principles are applied to describe spin waves in ferromagnets, cavity-mode coupling in antiferromagnets, and coherence phenomena relevant to spin qubits applications. Key Features: • A pedagogical approach to foundational concepts in spintronics with simple models that can be calculated to enhance understanding. • Nineteen chapters, each beginning with a historical perspective and ending with an outlook on current research. • 1200 references, ranging from landmark papers to frontline publications. Jean-Philippe Ansermet is Professor Emeritus at École Polytechnique Fédérale de Lausanne (EPFL), where he pioneered experiments on giant magnetoresistance, current-induced magnetization switching, heat-driven spin torque, and nuclear magnetic resonance. He taught mechanics, thermodynamics, and spin dynamics for more than twenty years. A fellow of the American Physical Society and recipient of the 2022 Credit Suisse Teaching Award, he was an executive board member of the European Physical Society, president of the Swiss Physical Society, and teaching director at EPFL. He has authored or co-authored textbooks on mechanics and thermodynamics and published more than two hundred articles.

Magnetic Memory Technology

Magnetic Memory Technology
Author: Denny D. Tang
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2021-01-07
Genre: Science
ISBN: 1119562236

STAY UP TO DATE ON THE STATE OF MRAM TECHNOLOGY AND ITS APPLICATIONS WITH THIS COMPREHENSIVE RESOURCE Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond delivers a combination of foundational and advanced treatments of the subjects necessary for students and professionals to fully understand MRAM and other non-volatile memories, like PCM, and ReRAM. The authors offer readers a thorough introduction to the fundamentals of magnetism and electron spin, as well as a comprehensive analysis of the physics of magnetic tunnel junction (MTJ) devices as it relates to memory applications. This book explores MRAM's unique ability to provide memory without requiring the atoms inside the device to move when switching states. The resulting power savings and reliability are what give MRAM its extraordinary potential. The authors describe the current state of academic research in MRAM technology, which focuses on the reduction of the amount of energy needed to reorient magnetization. Among other topics, readers will benefit from the book's discussions of: An introduction to basic electromagnetism, including the fundamentals of magnetic force and other concepts An thorough description of magnetism and magnetic materials, including the classification and properties of magnetic thin film properties and their material preparation and characterization A comprehensive description of Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) devices and their equivalent electrical model Spin current and spin dynamics, including the properties of spin current, the Ordinary Hall Effect, the Anomalous Hall Effect, and the spin Hall effect Different categories of magnetic random-access memory, including field-write mode MRAM, Spin-Torque-Transfer (STT) MRAM, Spin-Orbit Torque (SOT) MRAM, and others Perfect for senior undergraduate and graduate students studying electrical engineering, similar programs, or courses on topics like spintronics, Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond also belongs on the bookshelves of engineers and other professionals involved in the design, development, and manufacture of MRAM technologies.