Standard and Super-Resolution Bioimaging Data Analysis

Standard and Super-Resolution Bioimaging Data Analysis
Author: Ann Wheeler
Publisher: John Wiley & Sons
Total Pages: 311
Release: 2017-10-12
Genre: Science
ISBN: 1119096928

A comprehensive guide to the art and science of bioimaging data acquisition, processing and analysis Standard and Super-Resolution Bioimaging Data Analysis gets newcomers to bioimage data analysis quickly up to speed on the mathematics, statistics, computing hardware and acquisition technologies required to correctly process and document data. The past quarter century has seen remarkable progress in the field of light microscopy for biomedical science, with new imaging technologies coming on the market at an almost annual basis. Most of the data generated by these systems is image-based, and there is a significant increase in the content and throughput of these imaging systems. This, in turn, has resulted in a shift in the literature on biomedical research from descriptive to highly-quantitative. Standard and Super-Resolution Bioimaging Data Analysis satisfies the demand among students and research scientists for introductory guides to the tools for parsing and processing image data. Extremely well illustrated and including numerous examples, it clearly and accessibly explains what image data is and how to process and document it, as well as the current resources and standards in the field. A comprehensive guide to the tools for parsing and processing image data and the resources and industry standards for the biological and biomedical sciences Takes a practical approach to image analysis to assist scientists in ensuring scientific data are robust and reliable Covers fundamental principles in such a way as to give beginners a sound scientific base upon which to build Ideally suited for advanced students having only limited knowledge of the mathematics, statistics and computing required for image data analysis An entry-level text written for students and practitioners in the bioscience community, Standard and Super-Resolution Bioimaging Data Analysis de-mythologises the vast array of image analysis modalities which have come online over the past decade while schooling beginners in bioimaging principles, mathematics, technologies and standards.

Standard and Super-Resolution Bioimaging Data Analysis

Standard and Super-Resolution Bioimaging Data Analysis
Author: Ann Wheeler
Publisher: John Wiley & Sons
Total Pages: 307
Release: 2017-12-26
Genre: Science
ISBN: 1119096901

A comprehensive guide to the art and science of bioimaging data acquisition, processing and analysis Standard and Super-Resolution Bioimaging Data Analysis gets newcomers to bioimage data analysis quickly up to speed on the mathematics, statistics, computing hardware and acquisition technologies required to correctly process and document data. The past quarter century has seen remarkable progress in the field of light microscopy for biomedical science, with new imaging technologies coming on the market at an almost annual basis. Most of the data generated by these systems is image-based, and there is a significant increase in the content and throughput of these imaging systems. This, in turn, has resulted in a shift in the literature on biomedical research from descriptive to highly-quantitative. Standard and Super-Resolution Bioimaging Data Analysis satisfies the demand among students and research scientists for introductory guides to the tools for parsing and processing image data. Extremely well illustrated and including numerous examples, it clearly and accessibly explains what image data is and how to process and document it, as well as the current resources and standards in the field. A comprehensive guide to the tools for parsing and processing image data and the resources and industry standards for the biological and biomedical sciences Takes a practical approach to image analysis to assist scientists in ensuring scientific data are robust and reliable Covers fundamental principles in such a way as to give beginners a sound scientific base upon which to build Ideally suited for advanced students having only limited knowledge of the mathematics, statistics and computing required for image data analysis An entry-level text written for students and practitioners in the bioscience community, Standard and Super-Resolution Bioimaging Data Analysis de-mythologises the vast array of image analysis modalities which have come online over the past decade while schooling beginners in bioimaging principles, mathematics, technologies and standards.

Bioimage Data Analysis Workflows

Bioimage Data Analysis Workflows
Author: Kota Miura
Publisher: Springer Nature
Total Pages: 178
Release: 2019-10-17
Genre: Medical
ISBN: 3030223868

This Open Access textbook provides students and researchers in the life sciences with essential practical information on how to quantitatively analyze data images. It refrains from focusing on theory, and instead uses practical examples and step-by step protocols to familiarize readers with the most commonly used image processing and analysis platforms such as ImageJ, MatLab and Python. Besides gaining knowhow on algorithm usage, readers will learn how to create an analysis pipeline by scripting language; these skills are important in order to document reproducible image analysis workflows. The textbook is chiefly intended for advanced undergraduates in the life sciences and biomedicine without a theoretical background in data analysis, as well as for postdocs, staff scientists and faculty members who need to perform regular quantitative analyses of microscopy images.

Nanomedicine for Deep-Tissue High-Resolution Bio-Imaging and Non-Invasive Therapy

Nanomedicine for Deep-Tissue High-Resolution Bio-Imaging and Non-Invasive Therapy
Author: Michael Ming-Yuan Wei
Publisher: Frontiers Media SA
Total Pages: 223
Release: 2020-11-12
Genre: Science
ISBN: 288966113X

Dr Ming-Yuan Wei currently holds a pending U.S. Patent Application entitled “Systems and Methods for High-Resolution Imaging”. All other Guest Editors have no other competing interests to declare with regards to the Topic subject.

Optical Imaging in Human Disease and Biological Research

Optical Imaging in Human Disease and Biological Research
Author: Xunbin Wei
Publisher: Springer Nature
Total Pages: 309
Release: 2021-05-29
Genre: Medical
ISBN: 9811576270

The book introduces readers to the basic principle of optical imaging technologies. Focusing on human disease diagnostics using optical imaging methods, it provides essential information for researchers in various fields and discusses the latest trends in optical imaging. In recent decades, there has been a huge increase in imaging technologies and their applications in human diseases diagnostics, including magnetic resonance imaging, x-ray computed tomography, and nuclear tomographic imaging. This book promotes further developments to extend optical imaging to a wider range of disease diagnostics. It is a valuable resource for researchers and students in the field of biomedical optics, as well as for clinicians.

Image Analysis and Modeling in Ophthalmology

Image Analysis and Modeling in Ophthalmology
Author: Eddie Y. K. Ng
Publisher: CRC Press
Total Pages: 402
Release: 2014-02-11
Genre: Medical
ISBN: 1466559381

Successful thermal modeling of the human eye helps in the early diagnosis of eye abnormalities such as inflammation, cataracts, diabetic retinopathy, and glaucoma-all leading causes of blindness. This book presents a unified work of eye imaging and modeling techniques that have been proposed and applied to ophthalmologic problems. It delves into various morphological, texture, higher order spectra, and wavelet transformation techniques used to extract important diagnostic features from images, which can then be analyzed by a data scientist for automated diagnosis.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging
Author: Tim Salditt
Publisher: Springer Nature
Total Pages: 634
Release: 2020-06-09
Genre: Science
ISBN: 3030344134

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Quantitative Bioimaging

Quantitative Bioimaging
Author: Raimund J. Ober
Publisher: CRC Press
Total Pages: 693
Release: 2020-12-15
Genre: Medical
ISBN: 0429892128

Quantitative bioimaging is a broad interdisciplinary field that exploits tools from biology, chemistry, optics, and statistical data analysis for the design and implementation of investigations of biological processes. Instead of adopting the traditional approach of focusing on just one of the component disciplines, this textbook provides a unique introduction to quantitative bioimaging that presents all of the disciplines in an integrated manner. The wide range of topics covered include basic concepts in molecular and cellular biology, relevant aspects of antibody technology, instrumentation and experimental design in fluorescence microscopy, introductory geometrical optics and diffraction theory, and parameter estimation and information theory for the analysis of stochastic data. Key Features: Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques. An online appendix providing the background and derivations for various mathematical results presented or used in the text is available at http://www.routledge.com/9781138598980.